AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 37

1970

FALL JOINT
COMPUTER
CONFERENCE

CONFERENCE
PROCEEDINGS

VOLUME 37

FALL JOINT
COMPUTER
CONFERENCE

1970

19,
Texas

November 17 -

’

Houston

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1970 Fall Joint Computer Con-
ference Committee or the American Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 55-44701

AFIPS PRESS
210 Summit Avenue
Montvale, New Jersey 07645

©1970 by the American Federation of Information Processing Societies, Montvale,
New Jersey 07645. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS

A SPECTRUM OF PROGRAMMING LANGUAGES

The macro assembler, SWAP—A general purpose interpretive
PLOCESSOT . « . .ottt e et et e et e e e
Definition mechanisms in extensible programming languages........

VULCAN—A string handling language with dynamic storage
control.

MODERN MEMORY SYSTEMS

On memory system design.
Design of a very large storage system.

Design of a megabit semiconductor memory system............ ool

DESIGN FOR RELIABILITY

Optimum test patterns for parity networks.
A method of test generation for fault location in combinatorial logic. .

The application of parity checks to arithmetic control..............

OPERATING SYSTEMS AND SCHEDULES

Scheduling in a general purpose operating system..................

Scheduling TSS/360 for responsiveness.
Timesharing for OS........

SPY—A program to monitor OS/360.

AEROSPACE APPLICATIONS

An efficient algorithm for optimum trajectory computation.
Hybrid computer solutions for optimal control of time varying
systems with parameter uncertainties.

COMPUTER PROCUREMENT REQUIREMENTS IN RESEARCH
AND DEVELOPMENT

The role of computer specialists in eontracting for computers—An
interdisciplinary effort............
Selected R&D requirements in the computer and information sciences

jw—y

21

33
45

53

63

69

79

89

97
113

119

129

135

143
159

M. E. Barton
S. A. Schuman
P. Jorrand

E. F. Storm
R. H. Vaughan

R. M. Meade

S. J. Penny

R. Fink

M. Alston-Garnjost
D. Lund

C. A. Allen

S. R. Andersen

G. K. Tu

. C. Bossen
. L. Ostapko
. M. Patel

. Abell
osen

. Wagner

. Doherty

. Scherr

. Larkin
dgewmk
one

. MeDonald

SR ER®R S
égmobgmw>

K. 8. Day

W. Trautwein
C. L. Conner

R. N. Freed
M. E. Stevens

MULTI-ACCESS OPERATING SYSTEMS

Development of the Logicon 242 system.........................
System ten—A new approach to multiprogramming................

ANALYSIS OF RETRIEVAL SYSTEMS

On automatic design of data organizatioh

Analysis of retrieval performance for selected file organization
techniqQUes.o

Analysis of a complex data management access method by simulation
modeling. e

Fast “infinite-key’’ privacy transformation for resource-sharing
systems

COMPUTER ASSISTED UNDERGRADUATE INSTRUCTION

On line computer managed instruction—The first step.

Development of analog/hybrid terminals for teaching system

Aynamics. ... oot e
Computer tutors that know what they teach......................
Planning for an undergraduate level computer-based science edu-

cation system that will be responsive to society’s needs in the
1970’s

COMPUTER COMMUNICATION PART I

The telecommunication equipment market—Public policy and the
107078,
Digital frequency modulation as a technique for improving telemetry
sampling bandwidth utilization.........
THE ALOHA SYSTEM—Another alternative for computer com-
munications

COMPUTER AIDED DESIGN

Computer-aided system design................................ ..

Integrated computer aided design systems.

Interactive graphic consoles—Environment and software......... ..

INTERFACING COMPUTERS AND EDUCATION

MDS—A unique project in computer assisted mathematies.........

Teaching digital system design with a minicomputer............. ..

Computer jobs through training—A preliminary projeet report. -

169
181

187

201

211

223

231

241
251

257

269

275

281

287

297

315

325

333

345

A. L. Dean, Jr.
R. V. Dickinson
W. K. Orr

W. A. McCuskey

A. J. Collmeyer
J. E. Shemer

V.Y. Lum
H. Ling
M. E. Senko

J. M. Carroll
P. M. McLelland

J. S. Vierling
M. Shivaram

D. C. Martin
L. Siklossy

J. J. Allan
J. J. Lagowski
M. T. Muller

M. R. Irwin

G. E. Heyliger

N. Abramson

E. D. Crockett
D. H. Copp

J. W. Frandeen
C. A. Isberg

P. Bryant

W. E. Dickinson
M. R. Paige

R. C. Hurst

A. B. Rosenstein
R. L. Beckermeyer
R. H. Newton
P. W. Vonhof
W. C. Woodfill
M. G. Morgan
M. R. Mirabito
N. J. Down

COMPUTER COMMUNICATION PART II (A Panel Session)

(No papers in this volume)

SURVEY OF TIME SHARING SYSTEMS (A Panel Session)

Technical and human engineering problems in connecting terminals
to a time-sharing system. o L.

HYBRID SYSTEMS
Multiprogramming in a medium-sized hybrid environment..........

The binary floating point digital differential analyzer............. X

Time sharing of hybrid computers using electronic patching.........

SIMULATION LANGUAGES AND SYSTEMS

Digital voice processing with a wave function representation of speech

SIMCON—An advancement in the simulation of physical systems. . .

COMSL—A Communication System Simulation Language.
Cyberlogic—A new system for computer control...................

A model for traffic simulation and a simulation language for the
general transportation problem.................

ART, VICE AND GAMES

Realization of a skillful bridge bidding program. PO
Computer erime. e
Tran2—A computer graphics program to make seulpture...........

COMPUTERS AND MANUFACTURING

Manufacturing process control at IBM........
Extending computer-aided design into the manufacture of pulse
equalizers.

EFFECT OF :GOVERNMENT CONTROLS IN THE

COMPUTING INDUSTRY (A Panel Session)
Finite state automation definition of data communication line control
PrOCEAUIES. . .. o\ ottt ettt e e e e e e
A strategy for detecting faults in sequential machines not possessing
distinguishing sequences.
Coding/decoding for data compression and error control on data links
using digital computers............

COMPUTATIONAL EFFICIENCY AND PERFORMANCE

Minimizing computer cost for the solution of certain scientific
problems.

355

363

369

377

387

399

407

417

425

433
445
451

461

471

477

493 .

503

. 815

J. F. Ossanna
J. H. Saltzer

. R. Dodds
. L. Elshoff
. T. Hulina
. M.

. A. Moran
. D. Berge

D. Markel
Carey

E. Tossman

E. Williams

K. Brown

L. Granger

S. Robinson
R. Trimble, Jr.
A. Bavly

S. Walker
F. Womack
E. Lee

OFF CRRRAOWR-

I. Wasserman
. Van Tassel
Mallary

ol

J. E. Stuehler

L. A. O’Neill

D. Bjorner
D. E. Farmer

H. M. Gates
R. B. Blizard.

G. N. Pitts
P. B. Crawford

Analytical techniques for the statistical evaluation of program running

NEW DIRECTIONS IN PROGRAMMING LANGUAGES

(A Panel Session) (No papers in this volume)

TEXT PROCESSING

SHOEBOX—A personal file handling system for textual data..
HELP—A question answering system............................
CyperText—An extensible composing and typesetting language.

COMMUNICATION AND ON-LINE SYSTEMS

Integration of rapid access disk memories into real-time processors. .
Management problems unique to on-line real-time systems..........

ECAM—Extended Communications Access Method.
Programming in the medical real-time environment................

Decision making with computer graphies in an inventory control
environment. e

SELECTED COMPUTER SYSTEMS ARCHITECTURES

Associative capabilities for mass storage through array organization. .
Interrupt processing with queued content-addressable memories.

A language oriented computer design.

PROSPECTS FOR ANALOG/HYBRID COMPUTING
(A Panel Session)
Analog/hybrid—What it was, what it is, what it may be...........
TOPICAL PAPER
The hologram tablet—A new graphic input device

519
525

535
547
555

563
569

581
589

599

609

615
621

629

641

653

B. Beizer
B. Bussell

» R. A. Koster

. S. Glantz
. Roberts

. G. Moore
. P. Mann

=" Nol~--¢

. G. Spencer

. C. Malia

. W. Dickson

. J. Clancy, Jr.
. A. Palley

. H. Erbeck
A. Trotter, Jr.

==

oz

-

. Prokop
. Brooks, Jr.
. Sacks

A. Palley

Shubin

A Afifi

.S
P
T

iz R

>

A. M. Peskin

-J. D. Erwin

E. D. Jensen
C. McFarland

A. I. Rubin

M. Sakaguchi
N. Nishida

The macro assembler, SWAP—A general

purpose interpretive processor

by M. E. BARTON

Bell Telephone Laboratories
Naperville, Illinois

INTRODUCTION

A new macro assembler, the SWitching Assembly
Program (SWAP), provides a variety of new features
and avoids the restrictions which are generally found
in such programs. Most assemblers were not designed
to be either general enough or powerful enough to ac-
complish tasks other than produce object code. SWAP
may be used for a wide variety of other problems such
as interpretively processing a language quite foreign
to the assembler.

SWAP has been developed at Bell Telephone Lab-
oratories, Incorporated, to assemble programs for three
very different telephone switching processors. (SWAP
is written in the IBM 360 assembly language and runs
on the 360 with at least 256K bytes of memory.) With
such varied object machines and the need to have all
source decks translatable from the previously used as-
sembler languages to the SWAP language, it is no
wonder that the SWAP design includes many features
not found in other assemblers. The cumulative set of
features provides a powerful interpretive processor that
may be used for a wide variety of problems.

DESCRIPTION

The source language is free field. Statement labels
begin in column one. Operation names and parameters
are delimited by a single comma or one or more blanks.
Comments are preceded by the sharp sign (#), and the
logical end of line is indicated by the semicolon (;) or
physical end of eard. A method is provided for user in-
terpretation of other than this standard syntax; SWAP
is currently being used as a preliminary version of
several compilers. '

Inputs

The SWAP assembler may receive its original input
from a card, dise, or tape data set. The SOURCE
pseudo-operation allows the programmer to change the
input source at any point within a program. It is also
capable of receiving input lines directly from another
program, normally a source editor.

Outputs

Because the input line format is free field, the as-
sembly listing of the source lines may appear quite
unreadable. Therefore, the normal procedure is to have
the assembler align all the fields of the printed line.
The positions of the fields are, of course, a programmer
option. There are several classes of statements that
may be printed or suppressed at the programmer’s
discretion. In keeping everything as general as possible,
it is natural that any operation, pseudo-operation, or
macro may be assigned to any combination of these
classes of statements.

In addition to producing the object program, which
varies with different applications, and the assembly
listing just described, SWAP has the facility to save
symbol, instruction, or macro definitions in the form of
libraries which may be loaded and used to assemble
other programs.

Macro expansions and the results of text substitu-
tion functions are another optional output. The pro-
grammer completely controls which lines are to be
generated and the format of these lines. These lines
may be printed separately from the object listing or
placed on card, disc, or tape storage. This optional out-
put may be used to provide input to other assemblers,

2 Fall Joint Computer Conference, 1970

and in this way SWAP can become a pseudo-compiler
for almost any language. This output can also be used
to produce preliminary program documents from com-
ments which were originally placed in the source pro-
gram deck.

Variables

There are numerous types of variable symbols, such
as integers, floating point numbers, truth value, and
character strings. The programmer may change or
assign the type of any symbol as he wishes. For this
purpose, the type of a symbol or operation is repre-
sented by a character. Each variable symbol may have
up to 250 user-defined attributes which are data as-
sociated with each symbol. In addition, each symbol
represents the top of a push-down list which allows the
programmer to make a local use of any symbol.

A string variable would be defined by the TEXT
pseudo-operation: ‘ '

VOWELS TEXT ’‘AEIOU’
while a numeric value is assigned by SET:
LIMIT SET 10

The ‘functional’ notation is used extensively to
represent not only the value of a symbol attribute, but
also to represent array elements and predefined or
user-defined arithmetic functions. In the following
statement:

ALPHA(SA) SET BETA(SB)+10

the ALPHA attribute of symbol SA would be assigned
- a value ten greater than the BETA attribute of symbol
- SB.

An array of three dimensions would be deelared by
the statement:

ARRAY CUBE(—1:1,3,0:2) =4

In this example, the range of the first dimension runs
from —1 through 41, while the second dimension is
from 4-1 through +3, and the third is from 0 through
2. Each element would have the initial value 4, but
the following statement could be used to assign another
value to a particular element of the array:
CUBE(—1,2,0) SET 5

An attribute, array, or function reference may occur
anywhere that a symbol may be used in an arithmetic
expression.

Expressions

The following is a hierarchical list of the operators
allowed in expressions:

*x or | " exponentiation
* and / multiplication and
division
unary — and unary— negation and comple-
ment
+ and — addition and subtrac-
tion
=>,<, == or
=> or 2> the six relational op-
=< or < erators
& and — logical AND and
AND of comple-
ment
| and ! logical OR and EX-
CLUSIVE OR

(), [], and { } may be used in the usual manner to
force evaluation in any order.

Four particular rules apply to the use of these
operations:

1. Combined relations ApBpC are evaluated the
same as the expression A pB&BpC where p'is any
relational . operator.

2. Character strings in comparisons are denoted as
quoted strings.

3. The type of each operand is used to determine
the method of evaluation. (For example, the
complement of an integer is the 32-bit comple-
ment while the complement of a truth value is a
1-bit complement.) :

4. If a TEXT symbol is encountered as an operand
in an expression, it is called an indirect symbol,
and its value is the result of evaluating the
string as an expression.

Predefined Functions

Several built-in or predefined functions are provided
to aid in evaluating some of the more common expres-
sions. The following is a partial list of the available
functions:

E(EXP) Results in 2 raised to the
v EXP power.
MAX(EXPy,...,EXP,) Returns the maximum of

the expressions EXP,
through EXP,.

SWAP 3

STYP(EXP, C) Returns the value of EXP,
but the type of the result
is the character C as dis-
cussed in the Variables
section.

Returns the value of EXP
and assigns that same
value to the symbol
SYMB. This differs from
the SET pseudo-opera-
tion in that the symbol
is defined during the
evaluation of an expres-
sion.

SET(SYMB, EXP)

Programmer-defined functions

To allow the programmer to define any number of
new functions, the DFN pseudo-operation is provided.
The general form of a function definition is written:

DFN F(Py P, ..., P,)=As:By, As:Bs, ..., An:B,

where F is the function name, the Ps are dummy
parameter names, and the As and Bs are any wvalid
expressions. These expressions may contain the Ps and
other variables as well as other function calls which may
be recursive. .

To evaluate the function, the Bs are evaluated left
to right. The result is the value of the A corresponding
to the first B that has a value of true (or nonzero).
The colons may be read as the word “if.”” A simple
example would be the function:

DFN POS(X)=1:X>0,0:X<0

which returns the value 1 if its argument is positive;
otherwise, the result is zero. If the expression B, is
omitted, it is assumed to be true. Another example is
the following definition of Ackermann’s function:

DFN ACK(M,N)=N-+1:M =0, ACK(M—1,1):
N=0, ACK(M—1, ACK(M, N—1))

Two features are provided to allow an arbitrary num-
ber of arguments in the call of a function. The first is
the ability to ask if an argument was implicitly omitted
from the call. This feature is invoked by a question
mark immediately following the dummy parameter
name. If the argument was present, the result of the
parameter-question mark is the value true; otherwise,
the value is false. For example, the function defined by:

DFN INC(X,Y)=X4Y:Y? X+1
would yield the value 7 when called by INC (2, 5) since

Y is present, but the value of INC(3) is 4 since an
argument value for Y was omitted.

The other feature which allows an arbitrary number
of arguments is the ability to loop over a part of the
defining expression, using successive argument values
wherever the last dummy parameter name appears in
the range of the loop. This feature is invoked by the
appearance of an ellipsis (. ..) in the defining expres-
sion. The range of the loop is from the operator im-
mediately preceding the ellipsis backward to the first
occurrence of the same operator at the same level of
parentheses. As an example, consider the following
statement:

DFN SUM(X, Y) =A—I—JX**(Y—|-C) +oee
The range of the loop is from the + following the right
parenthesis backward to the + between the 4 and the
X. The call SUM(4,1,2,3) would yield the same
result as the following expression:

A+45*(14C) +4**(24C) +4**(3+C)

The loop may also extend over the expression between
two commas as the next example shows. A recursive
function to do the EXCLUSIVE OR of an indefinite
number of arguments could be defined by:

DFN XOR(A, B,C)=A—B|BoA:~(?,
XOR(XOR(4,B)lc). . .)
Sequencing control

The pseudo-operations that allow the normal se-
quence of processing to be modified provide the real
power of an assembler. In SWAP, the pseudo-operations
that provide that control are JUMP and DO. JUMP
forces the assembler to continue sequential processing
with the indicated line, ignoring any intervening lines.
The statement:

JUMP .LINE

will continue processing with the statement labeled:
.LINE. The symbol .LINE is called a sequence symbol
and is treated not as a normal symbol but only as the
destination of a JUMP or DO. Sequence symbols are
identified by the first character, which must be a period.
A normal symbol may also be used as the destination
of a JUMP or DO, if convenient. The destination of a
JUMP may be either before or after the JUMP state-
ment. , o

The JUMP is taken conditionally when an expres-
sion is used following the sequence symbol:

JUMP XX, INC>10 # IS IT OVER LIMIT

4 Fall Joint Computer Conference, 1970

The JUMP to .XX will occur only if the value of the
symbol INC is greater than ten.

The DO pseudo-operation is used to control an as-
sembly time loop and may be written in one of three
forms:

DO .LOC, VAR=INIT, TEXP, INC (4)
DO .LOC, VAR=INIT, LIMIT, INC (i)
DO .LOC, VAR = (LIST) (47)

Type (¢) assigns the value of INIT to the variable
symbol VAR. The truth value expression TEXP is
then evaluated and, if the result is true, all the lines
up to and including the line with .LOC in its location
field are assembled. The value of INC (if INC is
omitted, 1 is assumed) is then added to the value of
VAR and the test is repeated using the incremented
value of VAR.

Type (iz) is the same as type (¢) except that the
value of VAR is compared to the value of LIMIT; the
loop is repeated if INC is positive and the value of VAR
is less then or equal to the value of LIMIT. If INC is
negative, the loop is repeated only while the value of
VAR is greater than or equal to the value of LIMIT.

Type (4%2) assigns to VAR the value of the first item
in LIST. Succeeding values are used for each successive
time around the loop until LIST is exhausted.

The following are examples of the use of DO:

DO .Y, M=1, M<10&A (M) >0
DO .X,K=1,100, K+1
DO .Z N=(1,3,4,7,11,13,17)

Type ()
Type (4)
Type (%)

Control of optional output

Selected results of macro and text substitution facili-
ties may be used as an optional output. This is accom-
plished by the use of the EDIT psuedo-operation
which may be used in a declarative, global, or range
mode.

The declarative mode does not cause any output to
be generated, but is used to declare the destination
(printer, punch, or file) of the output and the method
of handling long lines. It is also used to control the
exceptions to the global output mode. For example,
the statement:

PRINT EDIT OFF('ALLY),
ON ('REMARKS', NOTE, DOC),
CONT(72,'X","-- ')

would indicate that edited output is to be printed, and
that any line that exceeds 72 characters is to be split

into two print records with an X placed at the end of
the first 72 characters and the remainder appended to
the ---. If EDIT ON, the global form, were to be
used with the above declarative, then only lines that
contain NOTE or DOC in the operation field as well
as all remark statements will be outputted.

The range form of EDIT allows a sequence of lines
to be outputted regardless of their syntax. Lines out-
putted in this mode are then ignored by the remainder
of the assembly processes.

Two examples of this form are EDIT .NEXT which
causes the next line to be outputted, and EDIT .LINE
which causes all lines up to, but not including, the line
with the sequence symbol .LINE in its label field. See
the Appendix for examples of the use of the EDIT
pseudo-operation.

Macros

The macro facilities incorporated in SWAP make it
one of the most flexible assemblers available. The
macro facilities presented here are by no means ex-
haustive but only representative of the more com-
monly used features.

The general form of a macro definition is:

MACRO
prototype statement
macro text lines
MEND

The prototype statement contains the name of the
macro definition as well as the dummy parameter
names which are used in the definition. The macro
text lines, a series of statements which make up the
definition of the macro, will be reproduced whenever
the macro is called.

Any operation, pseudo-operation, or macro may be
redefined as a macro. Also, there are no restrictions as
to which operations are used within a macro definition;
this means that it is legitimate for macro definitions to
be nested.

Macro operators and subarguments

Macro operators are provided to allow the pro-
grammer to obtain pertinent information about macro
arguments and some of their common parts. A macro
operator is indicated by its name character followed by
a period and the dummy parameter name of the
operand. For example, if a parameter named ARG has
the value (A4, B,C), then the number operator,

SWAP 5

N.ARG, would be replaced by the number of subargu-
ments of ARG; in this example, N.ARG is replaced
by 3.

Any subparameter of a macro argument may be ac-
cessed by subscripting the parameter name with the
number of the desired subargument. Additional levels
of subarguments are obtained with the use of multiple
indexes. As an example, let the parameter named ARG
assume the value P(Q, R(S, T')), then:

ARG(0) isreplaced by P
ARG(1) is replaced by @
ARG(2) is replaced by R(S, T)

ARG(2,0) isreplaced by R
ARG(2,1) isreplaced by S

The macro operators may be used on the results of
each other as well as on subparameters; for example,
N.ARG (2) would be replaced by 2.

The following is an example of a simple macro to
define a list of symbols:

MACRO
DEFINE LIST
DO .LP, K=1,N .LIST

LIST(K,1) SET LIST(XK, 2)
.LP NULL # MARK END OF DO LOOP
MEND

If the macro were called by the following line:
DEFINE ((SYMB, 5), (MATRIX (2),7), (CC, 11))
it would expand to:

SYMB SET 5
MATRIX(2) SET 7
CC SET 11

Macro functions

To provide more flexibility with the use of macros,
several system parameters and macro functions have
been made available. Macro functions are built-in
functions that are replaced by a string of characters.
This string, called the result, is determined by the
particular function and its arguments. The arguments
of a macro function may consist of macro parameters,
other macro funetion calls, literal character strings, or
symbolic variables. An example would be the DEC
macro function, which has one argument, either a
valid arithmetic or logical expression. The result is the
decimal number equal to the value of the expression;
the call DEC (7+4-8) would be replaced by 15.

Some of the major macro functions are:

1. IS(expression, sitring) is replaced by string if
the value of expression is nonzero; otherwise,
the result is the null string.

2. IFNOT (string) is replaced by string if the
expression in the previously evaluated IS had a
value of zero; otherwise, the result is null.

3. STR(exp;, exps string) is replaced by exp:
characters starting with the exp;, character of
string.

4. MTXT (isym) is replaced by the character
string which is the value of the TEXT symbol
tsym.

5. MTYP (symb) is replaced by the character that
represents the type of the variable symbol
symb.

6. MSUB (string) is replaced by the result of doing
macro argument substitution on string a second
time.

7. SYSLST(exp) is replaced by the expth argu-
ment of the macro call.

8. MDO(DO parameters; string) is a horizontal
DO loop where string is the range of the loop.
Each time around, the loop produces the value
of string, which is normally dependent on the "
DO variable symbol.

Keyword arguments

When the macro is called, keyword arguments are
indicated by the parameter name followed by an equal
sign and the argument string. An example would be
the following calls of a MOVE macro:

"MOVE FROM=NEWDATA, TO=0LDDATA

or ‘
MOVE TO=0LDDATA, FROM =NEWDATA

Both calls will yield the same expansions as the expan-
sion of the MOVE macro using normal arguments:

MOVE NEWDATA, OLDDATA

Default arguments

Default strings are used whenever an argument is
omitted from a macro call. The default string is as-
signed on the macro prototype line by an equal sign
and the desired default string after the dummy param-
eter name. Although the notation is the same, default
arguments are completely independent of the use of
keyword arguments.

6 Fall Joint Computer Conference, 1970

Marco pseudo-operations

The ARGS pseudo-operation provides a method of
declaring an auxiliary parameter list which supple-
ments the parameter list declared on the prototype
statement. These parameters may also be assigned
default values. _

The parameters defined on an ARGS line may be
used anywhere a normal parameter may be used. The
parameter values may be reset by the use of keyword
a.rguments

It is also possible for the programmer to reset his
named macro argument values anywhere within a
macro by using the MSET pseudo-operatlon For
example:

PARM MSET DEC(PARM)

would change the value of PARM to its decimal value.
The following is an example of the use of the ARGS
pseudo-operation:

MACRO

FUN NUMBER

ARGS WORD = (ONE, TWO, THREE)
- NUMBER=WORD (NUMBER)

MEND

When the macro is called by FUN 1+1, the following
comment would be generated:

14+1=TWO

but the call FUN 1+1, WORD =

would generate:

(EIN, ZWEI, DREI)
141=ZWEI

Text manipulating facilities

Some of the more exotic features provided by SWAP
are the character string pseudo-operations and the
dollar macro call.

HUNT and SCAN pseudo-operations

The HUNT pseudo-operation allows the programmer
to scan a string of characters for any break character
in a second string. It will then define two TEXT
symbols consisting of the portions of the string before
and after the break character. For example, the

statements:

BRKS TEXT '+ -—*/

HUNT -.LOC, TOKEN, REMAIN,
'LSIZE *ENTS’, BRKS

will result in the symbols TOKEN and REMAIN
having the string values of ‘LSIZE’ and "*ENTS’ re-
spectively. If one of the characters in BRKS could not
be found in the scanned string, then a JUMP to the
statement labeled .LOC would occur.

The SCAN pseudo-operation provides the extensive
pattern matching facilities of SNOBOL3! along with
success or failure transfer of control. This pseudo-
operation is written:

SCAN TSYM P,...P, GOTO
where TSYM 1is a previously defined string valued
variable. The SNOBOL3 notation is used to represent
the pattern elements P; through P, as well as the GOTO
field. See the references for a more detailed presentation
of these facilities.

Dollar functions

Dollar functions are very similar to macro functions
in that the result of a dollar function call is a string of
characters that replace the call. However, these func-
tions may be used on input lines as well as in macros.
The dollar functions provide the ability to call a one-
line macro anywhere on a line by preceding the macro
name with a dollar sign and following it with the argu-
ment list in parenthesis. For example, the macro:

MACRO
CHECK A, B
IS(4<B, DEC(B—A) MORE)
IFNOT (DEC(4~B) OVER)
MEND

could be called by:
OP X # $CHECK(X,7)

For X =4, the line would appear in the assembly
listing as:)

OP X # 3 MORE

SWAP 7

and when X has the value 9, the line would appear as:

OP X # 2 OVER

Special control

A special pseudo-operation has been provided to
allow the programmer to ignore most of the SWAP
syntax on input lines. The pseudo-operation is called
UNIOP for universal operation, and it assigns the
macro named in the variable field as the operation to be
used for all succeeding lines. This means that regardless
of what appears on a statement, that macro is called
and may be used to decompose the line into meaningful
SWAP statements. The following macro will make a
simple test (i.e., the presence of an equal sign) to see
if a line is a FORTRAN arithmetic statement and inter-
pretively perform the assignment if it is; otherwise, it
will call the macro named OTHER.

MACRO
ARITH
STRIP STATEMENT NUMBER
AND LOOK FOR EQUAL
SIGN
HUNT .OTHER, SYMB, RMDR,
‘STR (7, 64, SYSLIN)', '=’
SET STR(2, 62, MTXT(RMDR))
PERFORM ASSIGNMENT
JUMP .OUT # TERMINATE
MACRO EXPANSION
.OTHER OTHER 'SYSLIN’ # NOT
ARITHMETIC STATEMENT

MTXT(SYMB)

MEND

The system macro parameter SYSLIN is replaced
by the entire line of the macro call. The HUNT pseudo-
operation will search for an equal sign and force a jump
to the statement labeled .OTHER whenever the equal
sign cannot be found. If UNIOP were initially set to
the ARITH macro by the statement:

UNIOP ARITH
then the line:
100 MTX(2,3)=MTX(3,2)+1

would serve as a call to the ARITH macro which would
then generate the following line:

MTX (2,3) SET MTX (3,2)+1

Approximately 150 lines of SWAP macro definitions
(see the Appendix) were used to build an interpreter of
a FORTRAN like language. The following is a listing
of a sample program and the printout that resulted
from interpreting the program.

DIMENSION KOUNT (10, 10)
700 FORMAT (3X, 10I4)
DO 50 N=1,10

KOUNT(N,1) =1
50 KOUNT(N,N) =1

C
DO 100 N=3,10
DO 100 M=2N-1
100 KOUNT(N, M) =KOUNT(N—1, M)
C +KOUNT(N—1, M—1)
DO 20 N=1,10
200 PRINT 700, (KOUNT(N, M), M=1,N)
C
STOP
END
1
11
12 1
13 3 1
14 6 4 1
1 5 10 10 5 1
16 1520 15 6 1
17 21 3 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
CONCLUSION

The general design and implementation of the SWAP
macro assembler has led to three things:

1. The job of writing a program in assembler lan-
guage has been made easier. This is saving many
man hours of programmer effort over the life of a
project.

2. The development of intermediate level languages
using macros has been made easier. This is aiding
in the design of a true higher level language by
clarifying the requirements of the new language.

3. The interpretive processing capabilities of the
SWAP assembler have been used to solve a wide
variety of problems. This is significantly reducing

8A Fall Joint Computer Conference, 1970

the number of programs needed and, more
importantly, reducing the programmer effort
required to produce a given program.

ACKNOWLEDGMENTS

The author wishes to acknowledge the contribution of
Messrs. R. E. Archer, A. J. Emrick, N. M. Haller,
and E. Walton of Bell Telephone Laboratories, In-
corporated, to the design and implementation of
SWAP. The author would also like to thank Mr. D. E.
Eastwood for his many suggestions and “philosophical
arguments.” ‘

REFERENCES

1 D J FARBER R E GRISWOLD I P POLONSKY
SNOBOL, a string manipulation language
JACM Vol IT No 1 pp 21-30 January 1964

2 D J FARBER R E GRISWOLD I P POLONSKY
The SNOBOLS3 programming language
BSTJ Vol XLV No 6 pp 897-901 July 1966

3 M E BARTON N M HALLER G W RICKER
Service programs
BSTJ Vol 48 No 8 pp 2866-2880 October 1969

SWAP

8B

APPENDIX

A SWAP Program to Interpretively Process a
FORTRAN Lake Language.

SYSPRINT EDIT OFF (EDIT, 'ALL') ,ON(*MACROS')

FTYPES® TEXT ¢IX! # FORMAT ITEM TYPES

BRKS% TEXT /,H'"()? #FORMAT BREAK CHARACTERS

FTYPTB®% TRPAT (X(7D),'Q") (" (' 'P*),(*)','C"), (', 'CYY,("'/",
'S*), (X(7F),'0'), (255) * TRANSLATE BREAKS TO

ALPHABETICS
SQZ% TRPAT (' *',0), (255) # DELETES ALL BLANKS
EQ% TEXT '=¢ $#EQUAL SIGN IS BREAK CHAR
DIMENSION OPSET ARRAY
STOP OPSET END1
CONTINUE OPSET NULL
*

MACRO # ALL UNDEFINED OPS ARE ASSUMED TO BE EQUATIONS
NONOP
HUNT .OUT V% E% 'MTR('STR(7,99,SYSLIN)',SQZ%) ' EQ% ## SQUEEZ
OUT BLANKS
IS (*MTYP (O.MTXT(V%)) *='U', DFN MTXT (V%) MTXT (E%)) IFNOT (MTXT (V%)
SET1 STR(2,99,MTXT (E%)))
MEND
¢
MACRO
GOTO LOC,VAL=1
JUMP LOC (VAL) ## ALSO TAKES CARE OF CCMPUTED GOTOS
MEND

MACRO
IF COND,EQ,GT
TMP% TEXT 'MTR (*COND',SQZ%)*
SCAN TMP% #* (E%)* *LT%* ## GET EXPRESSION
JUMP MTXT (LT%) E%<0
JUMP EQ E%=0
' JUMP GT E%0
MEND

MACRO
PRINT FMT
DO .X K%=2,N.SYSLST ## CHECK FOR ITERATIVE LISTS
IS(*STR(1, 1, SYSLST (K%)) *=" (', ITEM%)IFNOT (ITM%:DEC (K%) TEXT)
*SYSLST (K%) !
-X NULL
FMT ouT_ MDO (K%=2, N. SYSLST; MTXT (I TM% :DEC (K%)))
MEND

8C Fall Joint Computer Conference, 1970

MACRO
FMT ouT_
K% SET 1;J% SET 0 ;JJ% SET 0
.LP EDIT -NEXT ## GENERATE A LINE OF PRINTOUT
MSUB (MTXT (FMT: _: DEC(K%)))
JUMP .LP, SET(K%,K%+1) <FMT:_L ## HAS FORMAT BEEN EXHAUSTED
JUMP .OUT,J%2N.SYSLST|J%<JJ% ##% WHEN PRINT LIST
EXHAUSTED OR NOTHING BEING DONE
JJI% SET J% |
.RLP EDIT .NEXT ## BACK UP TO LAST LEFT PAREN
MSUB (STR (FMT: _K, 500, MTXT (FMT: _: DEC(FMT:_R)))) ,
JUMP .RLP SET(K%,FMT:_R+1)>FMT:_LE&EJJI%<I% <N.SYSLST
JUMP .LP,J%<N. SYSLST |
MEND

MACRO
ITEM% IT ## PROCESS ITERATIVE PRINT LIST

HUNT .LST, VAR%,REM%, 'S.Q.IT',EQ%

T™MP MSET MTXT (VAR%)

Vs MSET TMP(N.TMP) ##ISOLATE LOOP INDEX
MACRO
FRMNDX VS=I.DEC (VS)

VLST% TEXT 'R.TMP (1) .TMP (N.TMP=1)"*
MEND FRMNDX
FRMNDX ## REPLACE INDEX BY ITS VALUE

ITM%:DEC (K%) TEXT !MDO (VS:MTXT (REM%) ;MSUB {MTXT (VLST%)))
JUMP .OUT

.LST NULL

ITM%:DEC (K%) TEXT IT ## IT WAS JUST AN EXPRESS ION

MEND
#
MACRO
FMT FORMAT LST
EDIT SAVE, OFF #% STOP PRINTING LINES

MEND FORT_PROG ## SUSPEND PROGRAM DEFINITION
REM% TEXT 'LST'

A% SET 0;XLINES SET 1;FMT:_R SET 1 ;FMT:_K SET 1

FMT BRK_OUT ##¢ BUILD FORMAT DEFINITION
FMI': _L SET XLINES | -
FMT:_:DEC(XLINES) TEXT *MDO (K%=1,A%;MI'XT (ITM%:DEC (K%))) '

FORT_PROG EXTEND ## RESUME SOURCE PROGRAM DEFINITION
EDIT RESTORE ## RESUME PRINTING LI STING
MEND

F 3 .
MACRO

FMT BRK_OUT

.LP HUNT -OUT,TRM%,REM%, ' STR (2,99, MTXT(REM%)) ' ,BRKS%
FMT BRK_:MTR (REM%,FTYPTB%,1) ## GO ON TRANSLATED BREAK
JUMP .LP
MEND

SWAP

8D

MACRO
BRK_C #4# COMMA OR RIGHT PAREN

HUNT .OUT, DUP%, TYP%, 'MTXT (TRM%) ! , FTY PES%

FTYP_:MTR (TYP%, FTYPTB%, 1)

MEND -
*
MACRO
FMT BRK_P #% LEFT PAREN
FMT:_R SET %LINES-=1 ## SAVE POSITION FOR AUTO REPEAT
FMT:_K SET 1:MDO (K%=1,A%; +K.MTXT (ITM% : DEC (K%)))
SCAN REM% * (SAVE%)* *SV2%% /F (. OUT)
BLMT% SET MAX (1,TRM%) ## DUPLICATION FACTOR
DO .BK, B%=1, BLMT%
REM% TEXT 'MTXT (SAVES%) *

.BK BRK_QUT
REM% TEXT *, MTXT(SV2%) *

MEND

s
MACRO

FMT BRK_S ##+ SLASH
BRK_C

FMT:_:DEC(%LINES) TEXT 'MDO (K%=1,A%;MTXT (ITM%:DEC (K%)))"'
A% SET O ;%LINES SET %LINES+1

MEND
'
MACRO
BRK_Q #* QUOTED STRING
ITM%:DEC (SET (A%, A%+1)) TEXT *Q.MTXT (REM%)*
REM% TEXT 'STR (K.Q.MTXT (REM%) +2, 99, MTXT (REM%)) *
MEND
#
MACRO
BRK_H ## HOLERITH STRING
ITM%: DEC (SET (A%, A%+1)) TEXT 'STR(2, TRM%,MTXT (REM%))
REM% TEXT *STR (TRM%+1,99,MTXT (REM%)) !
MEND
*
MACRO
FTYP_I ## INTEGER
LN MSET STR(2, 10, MTXT (TYP%))
DP MSET DEC (MAX (1, DUP%))

ITM%: DEC (SET(A%,A%+1)) TEXT *:I.MDO (%N=1,MIN (DP,I.N.J.SYSLST-
I.DEC (J%)) : I.DEC (I.SYSLST (SET (J%,J%+1)) ,LN,* *))?

MEND
¥

MACRO

FTYP_X ## BLANKS

ITM%: DEC (SET (A%, A%+1)) TEXT 'MDO(N%=1,MAX(1,DUP%);)°*

MEND

8E

Fall Joint Computer Conference, 1970

MACRO
END
SYSPRINT EDIT OFF ¢4 TERMINATE SOURCE LISTING
MEND FORT_PROG #%¢ END OF SOURCE PPOGRAM
FORT_ PROG #4%# NOW EXECUTE SOURCE PROGRAM
END1 #% TERMINATE ROUN
MEND

FORMAT OPBITS ON(ACTIVE) # ALLOW THESE OPS TO EXPAND
DURING MACRO DEFINITION

END OPBITS ON (ACTIVE)
END OPBITS OFF (CONT) # NO CONTINUATION ALLOWED FOR END
MACRO :
EDIT OPBITS ON (ACTIVE)
EDIT ON (FORMAT, END)
)
MACRO # MAKE ENTIRE PROGRAM A MACRO DEFINITION
FORT_PROG
SYSPRINT EDIT .NEXT ## EJECT TO NEW PAGE

1
PRINT EDIT ON #% PRODUCE SOURCE LISTING

Definition mechanisms in extensible

programming languages

by STEPHEN A. SCHUMAN*

Université de Grenoble
Grenoble, France

and

PHILIPPE JORRAND

Centre Scientifique IBM-France
Grenoble, France

INTRODUCTION

The development of extensible programming languages
is currently an extremely active area of research, and
one which is considered very promising by a broad
segment of the computing community. This paper repre-
sents an attempt at unification and generalization of
these developments, reflecting a specific perspective on
their present direction of evolution. The principal in-
fluences on this work are cited in the bibliography, and
the text itself is devoid of references. This is indicative
of the recurring difficulty of attributing the basic ideas
in this area to any single source; from the start, the
development effort has been characterized by an ex-
ceptional interchange of ideas.

One simple premise underlies the proposals for an
extensible programming language: that a ‘“user”” should
be capable of modifying the definition of that language,
in order to define for himself the particular language
which corresponds tb his needs. While there is, for the
moment, a certain disagreement as to the degree of
“gsophistication” which can reasonably be attributed to
such a user, there is also a growing realization that the
time is past when it is sufficient to confront him with
a complex and inflexible language on a ‘“‘take it or
leave it”’ basis.

According to the current conception, an extensible
language is composed of two essential elements:

* Present address: Centre Scientifique IBM—France

1. A base language, encompassing a set of indis-
pensable programming primitives, organized so
as to constitute, in themselves, a coherent
language.

A set of extension mechanisms, establishing a
systematic framework for defining new linguistic
constructions in terms of already existing ones.

o

Within this frame of reference, an extended language is
that language which is defined by some specific set of
extensions to the given base language. In practice,
definitions can be pyramided, using a particular ex-
tended language as the new point of departure. Implicit
in this approach is the assumption that the processing
of any extended language program involves its sys-
tematic reduction into an equivalent program, expressed
entirely in terms of the base language.

Following a useful if arbitrary convention, the ex-
tension mechanisms are generally categorized as either
semantic or syniactic, depending on the capabilities that
they provide. These two types of extensibility are the
subjects of subsequent- sections, where models are de-
veloped for these mechanisms.

Motivations for extensible languages

The primary impetus behind the development of
extensible languages has been the need to resolve what
has become a classic conflict of goals in programming
language design. The problem can be formulated as

10 Fall Joint Computer Conference, 1970

power of expression versus economy of concepts. Power
of expression encompasses both “how much can be
expressed” and “how easy it is to express”. It is es-

sentially a question of the effectiveness of the language,

as seen from the viewpoint of the user. Economy of
concepts refers to the idea that a language should
embody the ‘‘smallest possible number” of distinguish-
able concepts, each one existing at the “lowest possible
level”. This point of view, which can be identified with
the implementer, is based on efficiency considerations,
and is supported by a simple economic fact: the costs
of producing and/or using a compiler can become pro-
hibitive. Since it is wholly impractical to totally dis-
regard either of these competitive claims, a language
designer is generally faced with the futile task of
reconciling two equally important but mutually ex-
clusive objectives within a single language.

Extensible languages constitute an extremely prag-
matic response to this problem, in the sense that they
represent a means of avoiding, rather than overcoming
this dilemma. In essence, this approach seeks to en-
courage rather than to suppress the proliferation of
programming languages; this reflects an increasing dis-
illusionment with the ‘“universal language” concept,
especially in light of the need to vastly expand the
domain of application for programming languages in
general. The purpose of extensible languages is to es-
tablish an orderly framework capable of accommodating
the development of numerous different, and possibly
quite distinctive dialects.

In an extensible language, the criteria concerning

economy of concepts are imposed at the point of formu-
lating the primitives which comprise the base language.
This remains, therefore, the responsibility of the imple-
menter. Moreover, he is the one who determines the
nature of the extension mechanisms to be provided.
This acts to constrain the properties of the extended
languages subsequently defined, and to effectively con-
trol the consistency and efficiency of the corresponding
compilers.
- The specific decisions affecting power of expression,
however, are left entirely to the discretion of the user,
subject only to the restrictions inherent in the extension
mechanisms at his disposal. This additional ‘“degree of
freedom’’ seems appropriate, in that it is after all the
language user who is most immediately affected by
these decisions, and thus, most competent to make the
determination. The choices will, in general, depend on
both the particular application area as well as various
highly subjective criteria. What is important is that
the decision may be made independently for each indi-
vidual extended language.

At the same time, the extensible language approach
overcomes what has heretofore been the principal ob-

stacle to a diversity of programming languages: incom-
patibility among programs written in different lan-
guages. The solution follows automatically from the
fact that each dialect is translated into a common base
language, and that this translation is effected by es-
sentially the same processor.

Despite the intention of facilitating the deﬁmtlon of
diverse languages, the extensible language framework
is particularly appropriate for addressing such signifi-
cant problems as machine-to-machine transferability,
language and compiler standardization, and object code
optimization. The problems remain within manageable
limits, independent of the number of different dialects;
they need only be resolved within the restricted scope
of the base language and the associated extension
mechanisms.

Evolution of extensible languages

An extensible language, according to the original
conception, was a high level language whose compiler
permitted certain ‘“perturbations” to be defined. Se-
mantic extension was formulated as a more flexible set
of data and procedure declarations, while syntactic
extension was confined to integrating the entities which
could be declared into a pre-established style of expres-
sion. For the most part, the currently existing extensible
languages reflect this point of departure.

It is nonetheless true that the basic research under-
lying the development of extensible languages has taken
on the character of an attempt to isolate and generalize
the various ‘“component parts’” of programming lan-
guages, with the objective of introducing the property
of “systematic variability”’. A consequence of this effort
has been the gradual emergence of a somewhat more
abstract view of extensible languages, wherein the base
language is construed as an inventory of essential
primitives, the syntax of which minimally organizes
these elements into a coherent language. Semantic ex-
tension is considered as a set of ‘“‘constructors” serving
to generate new, but completely compatible primitives;
syntactic extension permits the definition of the specific
structural combinations of these primitives which are
actually meaningful. Thus, extensible languages have
progressively assumed the aspect of a language defi-
nition framework, one which has the unique property
that an operational eompiler exists at each point in the
definitional process.

Accordingly, it is increasingly appropriate to regard
extensible languages as the basis for a practical language
definition system, irrespective of who has responsibility
for language development. Potentially, such an en-
vironment is applicable even to the definition of non-

Definition Mechanisms in Extensible Programming Languages 11

extensible languages. Heretofore, it has been implied
that any given extended language was itself fully
extensible, since its definition is simply the result of
successive levels of extension. In conjunction with the
progressive generalization of the extension capabilities,
however, one is naturally led to envision a comple-
mentary set of restriction mechanisms, which would
serve to selectively disable the corresponding extension
mechanisms.

The intended function of the restriction mechanisms
is to eliminate the inevitable overhead associated with
the ability to accommodate arbitrary extension. They
would be employed at the point where a particular
dialect is to be ‘“frozen”. In effect, such restriction
mechanisms represent a means of imposing constraints
on subsequent extensions to the defined language (even
to the extent of excluding them entirely), in exchange
for a proportional increase in the efficiency of the
translator. The advantage of this approach is obvious:
the end result of such a development process is both a
coherent definition of the language and an efficient,
operational compiler.

Within this expanded frame of reference, most of the
extensible languages covered by the current literature
might more properly be considered as extended lan-
guages, even though they were not defined by means of
extension. This is not unexpected, since they represent
the results of the initial phase of development. The
remainder of this paper is devoted to a discussion of
the types of extension mechanisms appropriate to this
more evolved interpretation of extensible languages.
The subject of the next section is semantic extensibility,
while the final section is concerned with syntactic
extensibility. These two capabilities form a sort of two-
dimensional definition space, within which new pro-
gramming languages may be created by means of
extension. ‘

SEMANTIC EXTENSIBILITY

In order to discuss semantic extensibility, it is first
necessary to establish what is meant here by the
semantics of a programming language. A program re-
mains an inert piece of text until such time as it is
submitted to some processor: in the current context, a
computer controlled by a compiler for the language in
which the program is expressed. The activity of the
processor can be broadly characterized by the following
steps:

1. Recognition of a unit of text.

2. Elaboration of a meaning for that unit.

3. Invocation of the actions implied by that
meaning,. ‘

According to the second of these steps, the notion of
meaning may be interpreted as the link between the
units of text and the corresponding actions. The set of
such links will be taken to represent the semantics of
the programming language.

As an example, the sequence of characters “3.14159”
is, in most languages, a legitimate unit of text. The
elaboration of its associated meaning might establish
the following set of assertions:

—this unit represents an object which is a value.

—that value has a type, which is real.

—ithe internal format of that value is floating-
point.

—the object will reside in a table of constants.

This being established, the actions causing the con-
struction and allocation of the object may be invoked.
The set of assertions forms the link between the text
and the actions; it represents the ‘“meaning” of 3.14159.

With respect to the processor, the definition of the
semantics of a language may be considered to exist in
the form of a description of these links for each object
in the domain of the language. When a programming
language incorporates functions which permit explicit-
modification of these descriptions; then that language
possesses the property of semantic extensibility. These
functions, referred to as semantic extension mechanisms,
serve to introduce new kinds of objects into the lan-
guage, essentially by defining the set of linkages to be
attributed to the external representation of those ob-
jects.

Semantic extension in the domain of values: A model

The objects involved in the processing of a program
belong, in general, to a variety of categories, each of
which constitutes a potential domain: for semantic
extension. The values, in the conventional sense, ob-
viously form one such category. In order to illustrate
the overall concept of semantic extensibility, a model
for one specific mechanism of semantic extension will
be formulated here. It operates on a description of a
particular category of objects, which encompasses a
generalization of the usual notion of value. For example,
procedures, structures and pointers are also considered
as values, in addition to simple integers, booleans, etc.

These values are divided into classes, where each
class is characterized by a mode. The mode constitutes
the description of all of the values belonging to that
class. Thus the mode of ‘a value may be thought of as
playing a role analogous to that of a data-type. It is

12 Fall Joint Computer Conference, 1970

assumed that processing of a program is controlled by
syntaetic analysis. Once a unit of text has been isolated,
the active set of modes is used by the compiler to
elaborate its meaning. Typically, modes are utilized
to make sure that a value is employed correctly, to
verify that expressions are consistent, to effect the
selection of operations and to decide where conversions
are required.

The principal component of the semantic extension
mechanism is a function which permits the definition
of new modes. Once a mode has been defined, the
values belonging to the class characterized by that
mode may be used in the same general ways as other
values. That is to say, those values can be stored into
variables, passed as parameters, returned as results of
functions, ete.

The mode definition function would be used like a
declaration in the base language. The following notation
will be taken as a model for the call on this function:

mode o is v with =;

The three components of the definition are:

1. the symbol clause ‘“mode o,
2. the type clause ‘“is 77,
3. the property clause “with 7.

The property clause may be omitted.

The symbol clause

In the symbol clause, a new symbol o is declared as
the name of the mode whose description is specified
by the other clauses. For example,

mode complex is . . .

may be used to introduce the symbol complex. In ad-
dition, the mode to be defined may depend on formal
parameters, which are specified in the symbol clause as
follows:

mode matriz (inf m, tnt n) s . . .

The actual parameters would presumably be supplied
when the symbol is used in a declarative context, such as

matriz (4, 5)A;

The type clause

In the type clause, r specifies the nature of the values
characterized by the mode being defined. Thus, 7 is

either the name of an existing mode or a constructor
applied to some combination of previously defined
modes. There are assumed to be a finite number of
modes predefined within the base language. In the
scope of this paper, int, real, bool and char are taken
to be the symbols representing four of these basie
modes, standing for the modes of integer, real, boolean
and single character values, respectively. Thus, a valid
mode definition might be:

mode tnleger is ini;

The model presented here also includes a set of mode
constructors, which act to create new modes from existing
ones. The following list of constructors indicates the
kinds of combinations envisioned:

1. Pointers
A pointer is a value designating another value.
As any value, a pointer has a mode, which
indicates that:

—itisa pointer.
—it is able to point to values of a specified class.

The notation ptr M creates the mode character-
izing pointers to values of mode M. For example,

mode ppr s ptr pir real;

specifies that values of mode ppr are pointers to
pointers to reals.

2. Procedures
A procedure is a value, implying that one can
actually have procedure variables, pass proce-
dures as parameters and return them as the
results of other procedures. Being a value, a
procedure has a mode which indicates that:

—it is a procedure.

—it takes a fixed number (possibly zero) of
parameters, of specified modes.

—it returns a result of a given mode, or it does
not return any result.

The notation proc (M, ..., My) M forms the
mode of a procedure taking n parameters, of
modes M; . .. M, respectively, and returning a
value of mode M. As an example, one could
declare

mode trigo is proc (real)real;

Definition Mechanisms in Extensible Programming Languages 13

for the class of trigonometric functions, and then
mode trigocompose s proc (trigo, trigo)trigo;

for the mode of functions taking two trigono-
metric functions as parameters, and delivering a
third one (which could be the composition of
the first two) as the result.

. Aggregates
Two kinds of aggregates will be described:

a. the tuples, which have a constant number of
components, possibly of different modes;

b. the sequences, which have a possibly variable
number of components, but of identical
modes.

a. Tuples

The mode of a tuple having n components
is established by the notation [Mys,, . ..,
M,sn), where M, . .. M, are the modes of
the respective components, and s;...s,
are the names of these components, which
serve as selectors. Thus, the definition of
the mode complex might be written.

mode complex is [real rp, real ip];

If Z is a complex value, one might write
Z.rp or Z.ip to access either the real part
or the imaginary part of Z.
b. Sequences

The mode of a sequence is constructed by
the notation seq (e) M, where e stands for an
expression producing an integer value,which
fixes the length of the sequence; the paren-
thesized expression may be omitted, in
which case the length is variable. The
components, each having mode M, are
indexed by integer values ranging from 1
to the current length, inclusively. The
mode for real square matrices could be
defined as follows:

mode rsqmatriz (int n)
s seq (n) seq (n) real;

If B is a real square matrix, then the nota-
tion B(i)(§) would provide access to an in-
dividual component.

4. Union

The union constructor introduces a mode char-
acterizing values belonging to one of a specified

list of classes. The notation union (My, . .., M,)
produces a mode for values having any one of
the modes M;. ..M,. Thus, if one defines

mode procir is proc (unzon (int, real));

this mode describes procedures taking one pa-
rameter, which may be either an integer or a
real, and returning no result. A further example,
using the tuple, pointer, sequence and union
constructors, shows the possibility of recursive
definition:

mode tree
1s [char root,

seq ptr union (char, tree) branch];

The list of mode constructors given above is intended
to be indicative but not exhaustive. Moreover, it must
be emphasized that the constructors themselves-are
essentially independent of the nature and number of
the basic modes. Consequently, one could readily admit
the use of such constructors with an entirely different
set of primitive modes (e.g., one which more closely
reflects the representations on an actual machine).
What is essential is that the new modes generated by
these constructors must be usable in the language in
the same ways as the original ones.

The property clause

The property clause “with =’’ when present, specifies.
a list of properties possessed by the values of the mode
being defined. These properties identify a sub-class of
the values characterized by the mode in the type clause.
Two kinds of properties are introduced for the present
model: transforms and selectors. ‘

1. Transforms
The transforms provide a means of specifying
the actions to be taken when a value of mode
M; occurs in a context where a value of mode
M, is required (M;%=M,). If M is the mode
being declared, then two notations may be used
to indicate a transform:

a. “from M; by V.E,,” which specifies that a
value of mode M may be produced from a
value of mode M, (identified by the bound
variable V) by evaluating the expression E,.

14

Fall Joint Computer Conference, 1970

b. “into M, by V.E,”’ which specifies that a
value of mode M, may be produced from a
value of mode M (identified by the bound
variable V) by evaluating the expression H,.
The following definitions provide an illus-
tration:

mode complex
18 [real rp, real ip]
with from real .
by x. [x, 0.0],
wnto real
byy. (¢f yip=0
then y.rp
else error);

mode tmaginary
18 [real ip]
with from complex
by x. (if xrp=0
then [x.ip]
else error),
into complex

by y. [0.0, y.ip];

By the transforms in the above definitions, all of
the natural conversions among real, complex,
and imaginary values are provided. It must be
noted that the system of transformations
specified among the modes may be represented
by a directed graph, where the nodes correspond
to the modes, and the arcs are established by
the from and into transforms. Thus, the rule to
decide whether the transformation from M; into
M, is known might be formulated as follows:

1. There must exist at least one path from M,
to Mz.
il. If there are several paths, there must exist
one which is shorter than all of the others.
iii. That path represents the desired trans-
formation.

. Selectors

The notation ‘“take Mys as V.E” may appear in
the list of properties attached to the definition
of the mode M. It serves to establish the name
“s” as an additional selector which may be
applied to values of mode M to produce a value
of mode M;. Thus, if X is a value of mode M,
then the effect of writing “X.s” is to evaluate
the expression E (within which V acts as a
bound variable identifying the value X) and to

transform its result into a value of mode M;.
As an example, the definition of complex might
be augmented by attaching the following two
properties:

take real mag as Z. (sqrt (Z. rp T 24+Z.ip T 2)),
take radian ang as Z. (arctan (Z.ip/Z.rp));

The mode radian is presumed to be defined else-
where, and to properly characterize the class of
angular values. ‘

As with the case of the constructors, the properties
presented here are intended to suggest the kinds of
facilities which are appropriate within the framework
established by the concept of mode.

In summary, it must be stressed that the model de-
veloped here is applicable only to one particular cate-
gory of objects, namely the values on which a program
operates. Clearly, there exist other identifiable cate-
gories which enter into the processing of a program
(e.g., control structure, environment resources, etc.).
It is equally appropriate to regard these as potential
domains for semantic extensibility. This will no doubt
necessitate the introduction of additional extension
mechanisms, following the general approach estab-
lished here. As the number of mechanisms is expanded,
the possibility for selective restriction of the extension
capabilities will become increasingly important. The
development of the corresponding semantic restriction
mechanisms is imperative, for they are essential to the
production of specialized compilers for languages
defined by means of extension.

SYNTACTIC EXTENSIBILITY

A language incorporating functions which permit a
user to introduce explicit modifications to the syntax
of that language is said to possess the property of
syntactic extensibility. The purpose of this section is to
establish the nature of such a facility. It is primarily
devoted to the development of a model which will serve
to characterize the mechanism of syntactic extension,
and permit exploration of its definitional range.

It must be made explicit that, when speaking of
modifications to the syntax of a language, one is in fact
talking about actual alterations to the grammar which
serves to define that syntax. For a conventional lan-
guage, the grammar is essentially static. Thus, it is
conceivable that a programmer could be wholly un-
aware of its existence. The syntactic rules, which he is
nonetheless constrained to observe (whether he likes -
them or not), are the same each time he writes a pro-

Definition Mechanisms in Extensible Programming Languages 15

gram in that language, and no deviation is permitted
anywhere in the scope of the program. The situation is
significantly different for the case of a syntactically
extensible language. This capability is provided by
means of a set of functions, properly imbedded in the
language, which acts to change the grammar. Provided
that the user is cognizant of these functions and their
grammatical domain, he then has the option of effecting
perhaps quite substantial modifications to the syntax of
that language during the course of writing a program in
that language; this is in parallel with whatever semantic
extensions he might introduce. In effect, the grammar
itself becomes subject to dynamic variation, and the
actual syntax of the language becomes dependent on
the program being processed.

The syntactic macro mechanism: A model

The basis of most existing proposals for achieving
syntactic extensibility is what has come to be called
the syntactic macro mechanism. A model of this mecha-
nism is introduced at this point in order to illustrate
the possibilities of syntactic extension. The model is
based on the assumption that the syntactic component
of the base language, and by induction any subsequent
extended language, can be effectively defined by a
context-free grammar (or the equivalent BNF repre-
sentation). This relatively simple formalism is adopted
as the underlying definitional system despite an obvious
contradiction which is present: a grammar which is
subject to dynamic redefinition by constructs in the
language whose syntax it defines is certainly not
“context-free” in the strict sense. Therefore, it is only
the instantaneous syntactic definition of the language
which is considered within the context-free framework.

The most essential element of the syntactic macro
mechanism is the function which establishes the defini-
tion of a syntaetic macro. It must be a legitimate lin-
guistic construct of the base language proper, and its
format would likely resemble any other declaration in
that language. The following representation will be
used to model a call on this function: '

macro ¢ where = means p;

The respective components are:
¢, the production;
w, the predicate; and
p, the replacement.

The macro clause would be written in the form

macro C—‘phrase’

where C is the name of a category (non-terminal)
symbol in the grammar, and the phrase is an ordered
sequence, S;...8,, such that each constituent is the
name of a category or terminal symbol. Thus the pro-
duction in a macro clause corresponds directly to a
context-free production. The where and means clauses
are optional components of the definition, and will be
discussed below.

A syntactic macro definition differs from an ordinary
declaration in the base language in the sense that it is a
function operating directly on the grammar, and takes
effect immediately. In essence, it incorporates the
specified production into the grammar. Subsequent to
the occurrence of such a definition in a program, syn-
tactic configurations conforming to the structure of the
phrase are acceptable wherever the corresponding cate-
gory is syntactically valid. This will apply until such
time as that definition is, in some way, disabled. As an
example, one might include a syntactic macro definition
starting with

macro FACT—PRIM !’

for the purpose of introducing the factorial notation
into the syntax for arithmetic expressions. Within the
scope of that definition, the effect would be the same as
if the syntactic definition of the language (represented
in BNF) incorporated an additional alternative

(factor)::=... | {primary)!
Thus, in principle, a statement of the form
¢c:=nl/(n—m)!'*m!);

might become syntactically valid according to the
active set of definitions.

The production

The role of the production is to establish both the
context and the format in which “calls’”’ on that macro
may be written. The category name on. the left controls
where, within the syntactic framework, such calls are
permitted. One may potentially designate any category
which is referenced by the active set of productions.
The phrase indicates the exact syntactic configuration
which is to be interpreted as a call on that particular
macro. In general, one may specify any arbitrary se-
quence (possibly empty) of symbol names. The con-
stituents may be existing symbols, terminals which
were not previously present, or categories to be defined
in other macros. This is of course, subject to the con-
straint that the grammar as a whole must remain both

16 Fall Joint Computer Conference, 1970

well-formed and non-ambiguous, if it is to fulfill its
intended function.

In addition, the macro clause serves to declare a set
of formal parameters, which may be referenced else-
where in the definition. Each separate call on that
macro can be thought of as establishing a local syntactic
context, defined with respect to the complete syntax tree
which structurally describes the program. This context
would be relative to the position of the node corre-
sponding to the specified category, and would include
the immediate descendants of that node, corresponding
to the constituents of the phrase. At a eall, the symbol
names appearing in the production are associated with
the actual nodes occurring in that context. Thus, the
terminal names represent an individual instance of
that terminal, and the category names represent some
complete syntactic sub-tree belonging to that category.
In order to distinguish between different formal param-
eters having the same name, the convention of sub-
scripting the names will be adopted here; this notation
could readily be replaced by declaration of unique
identifiers.

The replacement

The means clause specifies the syntactic structure
which constitutes the replacement for a call on that
particular macro. It is written in the form

means ‘string’

where the string is an ordered sequence, composed of
either formal parameters or terminal symbol names.
An instance of this string is generated in place of every
call on that macro, within which the actual structure
represented by a formal parameter is substituted for
every occurrence of its name. If the complete syntactic
macro definition for the factorial operator had been

macro FACT—PRIM, !’
means ‘factorial (PRIM,)’;

then each call on this macro would simply be replaced
by a call on the procedure named ““factorial’”’, assumed
to be defined elsewhere.

When present, the means clause establishes the
semantic interpretation to be associated with the corre-
sponding production; if absent, then presumably the
construct is only an intermediate form, whose inter-
pretation is subsumed in some larger context. The
“meaning,” however, is given as the expansion of that
construct into a “logically lower level language’.
While the replacement may be expressed in terms of
calls on other syntactic macros, these will also be ex-

panded. In effect, the meaning of every new construct
introduced into the language is defined by specifying
its systematic expansion into the base language. Ae-
cordingly, one might consider syntactic extension
merely as a means for permitting a set of “systematic
abbreviations” to be defined “on top of” the base
language.

An important consequence of the fact that a syntactic
macro definition is itself a valid element of the base
language is that such definitions may occur in the con-
text of a replacement. This is illustrated by the follow-
ing example, showing how a declaration for ‘‘push-
down stack’ might be introduced:

macro DECLy—TYPE; stack [EXPR;] IDEN,;
means ‘TYPE, array [1: EXPR,] IDEN;;
integer level _IDEN, ¢nitial O;
macro PRIMy—*‘depth_ IDEN/’
means ‘res (EXPRy)’;

macro PRIM;—‘IDEN/’
means ‘(if level__IDEN,; >0
then

(IDEN; [level IDEN,],
level _IDEN;: =
level IDEN;—1;)
else '
error (‘“overdraw
IDEN/?")Y;
macro REFR—‘IDENY
means ‘(if level _IDEN; <
depth_ IDEN,
then
(level IDEN,: =
level IDEN;+1;
IDEN, [level_IDEN;])
else
error (‘“overflow

IDEN/))’;

Thus a declaration of the form
integer stack [K] S;

would generate not only the necessary array for holding
the contents of the stack, but also several other declara-
tions, including:

1. An integer variable, named level S, corre-
sponding to the level counter of the stack. It is
initialized to zero on declaration.

2. A literal, written “depth__8,” for representing
the depth of that stack. Its expansion is given
in terms of the operator res, which is taken to
mean the result of a previously evaluated ex-

Definition Mechanisms in Extensible Programming Languages 17

pression, and presumed to be defined accord-
ingly. k

3. A magcro definition (PRIM,) which establishes,
by means of a compound expression, the inter-
pretation of the stack name in “fetch-context”.
This allows one to write “N: =8;” for removing
the value from the top of the stack S and assign-
ing it to the integer variable N.

4. A macro definition (REFR,) which establishes
the corresponding ‘‘store context’” operation.
One can then write “S: =5;" to push a new value
into the stack.

The predicate

The where clause provides a way of specifying addi-
tional conditions which must be satisfied in order that
the configuration defined by the phrase constitute a call
on that particular macro. Its absence implies that the
syntactic structure of the phrase is sufficient to identify
a call. When present, it serves to introduce additional
selectivity into the definition, which enhances the
effect of conditional expansion. It is also a vehicle for
enlarging the local syntactic context established at each
call on the macro, thereby expanding the set of formal
parameters declared within the definition.

As construed here, a predicate would be written as a
sequence of calls on specialized logical functions,
separated by the usual operators of predicate calculus
(conjunction, disjunction, implication, etc.) and
grouped by parentheses. The list which follows is
indicative of the kind of functions which might be
appropriate:

1. Si=S;
which decides whether the syntactic configura-
tions associated with the two previously declared
formal parameters, S; and S;, are structurally
equivalent. S; may instead be the symbol e,
which is used to decide whether S; represents a
construct corresponding to the empty phrase.

2. S;#=S;
which is the opposite of function (1). The follow-
ing definition

macro BLOCy—‘LABL;: begin STATLIST,
end LABL,;
where LABL,>#¢ D LABL,=LABL,
means . . .

illustrates the use of these functions in a
predicate.

3. S;—‘phrase’

where S; is a previously declared parameter
representing a category, and the phrase is written
analogously to that of the production in a macro
clause. It verifies whether the immediate sub-
structure of the specified parameter corresponds
to the indicated configuration. The constituents
of the phrase are also declared as formal param-
eters. An interesting example is suggested by a
peculiarity in PL/I, wherein the relation
“7<6<b” 1s found to be true. A possible
remedy might be formulated as follows:

macro REL—REL; <EXPR,
where REL,—EXPR; <EXPR,’
means REL; A res(EXPR,) < EXPRy’;

The production in the where clause is assumed
to be included in the base language, and “REL A
REL” is taken to be syntactically defined
elsewhere.

. S;=‘phrase’

which is analogous to function (3), except that
it verifies the sub-structure at an arbitrary depth,
even to the terminal string. An example of its
use might be:

macro ASGNy—‘REFR,;: =EXPR/
where REFR,—‘IDEN,’
A EXPR=‘IDEN,+1’
A IDEN,;=IDEN,
means . . .

These functions are readily generalizable into
an extremely powerful pattern-matching
mechanism.

. 3Sr—>Sj

which determines, in the local syntactic context
of the previously declared parameter, S;,
whether the immediate antecedent of S; cor-
responds to the category specified by S;. Also,
S is declared as a formal parameter representing
the “father” of S;.

. gSi=>Sj

which is simply a generalization of funection (5),
establishing S; as the (nearest) direct antecedent
of S;, regardless of the distance, which belongs
to the category named by S;. For example, to
access the name (IDEN;) of the procedure in
which a particular statement (STAT,) is im-
bedded, one might write a where clause of the

18

Fall Joint. Computer Conference, 1970

following form:

where 3 PROC,=STAT,
A PROC,—HEAD, ...’
A HEAD1—>‘IDEN1 proc . ..’

‘The ellipsis notation is introduced with the

framework of functions (3) and (4) to indicate
that the structure of the corresponding con-
stituents is irrelevant [and indeed, it may not
even be knowable in the contexts that can be
established by functions (5) and (6)].

. 3 S;y«‘string’

which is successful on the condition that the
string (generated analogously to the replacement
string) is directly reducible to the category
specified by S;, which is also declared as a formal
parameter to represent the completed sub-tree
reflecting the analysis.

. 3 8;< string’

which is analogous to function (7), but the con-
dition is generalized to verify whether the string
is reducible (regardless of the depth of the
structure) to the specified category. The defini-
tion of the “maximum” function, which requires
two syntactic macros, provides an interesting
example:

macro PRIMy—‘maxr (EXPRLIST,)’
where EXPRLIST,—EXPR,’
means ‘(EXPR,)’;
macro PRIM;—‘maxr (EXPRLIST,)’
where EXPRLIST,—EXPRLIST,,
EXPR,’
A 3 PRIMy=max (EXPRLIST,)’
means ‘(if PRIM.>EXPR,
then res PRIM,
else res (EXPR,))’-

. P (arguments)

where P is the name of a semantic predlcate and
the arguments may be either formal parameters
or terminal symbols. Such conditions constitute
a means of imposing non-syntactic constraints
on the definition of a syntactic macro. They are
especially applicable in those situations where
it is necessary to establish the mode of a particu-
lar entity. For example, one might rewrite the
factorial definition as follows:

macro FACT—‘PRIM, !’
where is__integer (PRIM;)
means ‘factorial (PRIM;)’;

In this form the definition also has the effect
of allowing different meanings to be associated
with the factorial operator, dependent on the
mode of the primary.

10. 38;: F (arguments)

Where F is the name of a sema.ntlc function
which conditionally returns a syntactic result.
Siis also declared as a formal parameter to repre-
sent this result. The semantic functions and
predicates establish an interface whereby it is
possible to introduce syntactic and semantic
interdependencies. A likely application of seman-
tic functions would be definitions involving
identifiers:

where 3 LABL,: newlabel (IDEN,) . ..

A particularly intriguing possibility is to pro-
vide a semantic function which evaluates an
arbitrary expression:

where 3 CONST;: evaluate (EXPRy) . ..

Obviously, this concept could be expanded to
encompass the execution of entire programs, if
desired.

It is evident that the role of the where clause in a
syntactic macro definition is to provide a framework
for specifying those properties which effectively cannot
be expressed within the context-free constraints. The
fashion in which they are isolated allows these aspects
to be incorporated without sacrificing all of the prac-
tical advantages which come from adopting a relatively
simple syntactic formalism as the point of departure.
With respect to the model presented here, however, it is
nonetheless clear that the definitional power of the
syntactic macro mechanism is determined by the power
of the predicates.

Operationally, the syntactic macro mechanism can
be characterized by three distinct phases, each of which
is briefly considered below.

Definition phase

The definition phase encompasses the different func-
tions incorporated within the base language which act
to insert, delete or modify a syntactic macro definition.
Together, they constitute a facility for explicitly editing
the given grammar, and are employed to form what
might be called the active syniaciic definition. This con-
sists of the productions of the currently active syntac-

Definition Mechanisms in Extensible Programming Languages 19

tic macros (with their associated predicates and re-
placements), plus the original productions of the base
language. An interesting generalization would be to
provide a means of selectively eliminating base lan-
guage productions from the active syntactic definition,
thereby excluding those constructions from the source
language; they would still remain part of the base
language definition, however, and continue to be con-
sidered valid in the context of a replacement. In this
fashion, the syntax of an extended language could be
essentially independent of the base language syntax,
thus further enhancing the definitional power of the
syntactic macro mechanism.

Interpretation phase

The interpretation phase includes the processing of
syntactic macro calls. It consists of three separate
operations: (1), recognition of the production; (2),
verification of the predicate; and (3), generation of the
replacement. Obviously, these operations must pro-
ceed concurrently with the process of syntactic analysis,
since syntactic macro expansion is incontestably a
“compile-time facility’’. Given the present formulation
of the syntactic macro mechanism, some form of what
is called “syntax directed analysis’” suggests itself
initially as the appropriate approach for the analyzer.
It must be observed that the character of the analysis
procedure is constrained to a certain extent by the
nature of the predicates contained within the active
syntactic definition. Furthermore, the presence of
semantic predicates and functions precludes realization
of the analyzer/generator as a pure preprocessor.

In general, there will be the inevitable trade-off to
be made between power of definition and efficiency of
operation. It is pointless to pretend that this trade-off
can be completely neglected in the process of formu-
lating the syntactic definition of a particular extended
language. However, deliberate emphasis has been given
here to power of definition, with the intention of pro-
viding a very general language development framework,
one which furnishes an operational compiler at every
stage. It is argued that the problem of obtaining an effi-
cient compiler properly belongs to a subsequent phase.

Restriction phase

The restriction phase, as construed here, would be a
separate operation, corresponding to the automatic
consolidation of some active syntactic definition in
order to provide a specialized syntactic analyzer for
that particular dialect. The degree to which this

analyzer can be optimized is determined both by the
syntactic complexity of the given extended language,
and by the specific constraints on further syntactic
extension which are imposed at that point. If subse-
quent extensions are to be permitted, they might be
confined within extremely narrow limits in order to
improve the performance of the analyzer; they may be
excluded entirely by suppressing the syntactic defini-
tion functions in the base language. In either case,
various well-defined sub-sets of context-free grammars,
for which explicit identification and efficient analysis
algorithms are known to exist, constitute a basis for
establishing the restrictions. This represents the great-
est practical advantage of having formulated the syn-
tactic definition essentially within the context-free
framework.

In conclusion, it is to be remarked that syntactic
extensibility is especially amenable to realization by
means of an extremely powerful extension mechanism
in conjunction with a proportionally powerful restric-
tions mechanism. This approach provides the essential
definitional flexibility, which is a prerequisite for an
effective language development tool, without sacrificing
the possibility of an efficient compiler. In the end,
however, the properties of a particular extended lan-
guage dictate the efficiency of its processor, rather than
the converse. This is consistent with the broadened
interpretation of extensible languages discussed in this

paper.

BIBLIOGRAPHY

1 T E CHEATHAM Jr
The introduction of definitional facilities into higher level
programming languages
Proceedings of AFIPS 1966 Fall Joint Computer Conference
Second edition Vol 29 pp 623-637 November 1966

2 T E CHEATHAM Jr A FISCHER Ph JORRAND
On the basis for ELF—an extensible language facility
Proceedings of AFIPS 1968 Fall Joint Computer Conference
Vol 33 Part 2 pp 937-948 November 1968

3 C CHRISTENSEN C J SHAW Editors
Proceedings of the extensible languages symposium
Boston Massachusetts May 1969 SIGPLAN Notices
Vol 4 Number 8 August 1969

4 B A GALLER A J PERLIS
A proposal for definitions in ALGOL
Communications of the ACM Vol 10 Number 4 pp
204-299 April 1967

5 J V GARWICK
GPL, a truly general purpose language
Communications of the ACM Vol 11 Number 9 pp
634-639 September 1968

6 E T IRONS
Ezxperience with an extensible language
Communications of the ACM Vol 13 Number 1 pp 31-40
January 1970

20 Fall Joint Computer Conference, 1970

7 Ph JORRAND
Some aspects of BASEL, the base language for an extensible
language facility
Proceedings of the Extensible Languages Symposium
SIGPLAN Notices Vol 4 Number 8 pp 14-17 August 1969

8 B M LEAVENWORTH
Syniax macros and extended translation
Communications of the ACM Vol 9 Number 11 pp 790-793
November 1966

9 M D McILROY
Macro instruction extensions to comptler languages
Communications of the ACM Vol 3 Number 4 pp 214-220
April 1960

10 A J PERLIS

The synthests of algorithmic systems
First ACM Turing Lecture Journal of the ACM Vol 14
pp 1-9 January 1967

11 T A STANDISH

Some features of PPL, a polymorphic programming language

Proceedings of the Extensible Languages Symposium

SIGPLAN Notices Vol 4 Number 8 pp 20-26 August 1969
12 T A STANDISH

Some compiler-compiler technigues for use in extensible

languages

Proceedings of the Extensible Languages Symposium

SIGPLAN Notices Vol 4 Number 8 pp 55-62 August 1969
13 A VAN WIJNGAARDEN B J MAILLOUX

J EL PECK C H A KOSTER

Report on the algorithmic language ALGOL 68

MR 101 Mathematisch Centrum Amsterdam October 1969
14 B WEGBREIT

A data type definition facility)

Harvard University Division of Engineering and Applied

Physies unpublished 1969

Vulecan—A string handling language

with dynamic storage control*

by E. F. STORM

Syracuse University
Syracuse, New York

and

R. H. VAUGHAN

National Resource Analysis Center
Charlottesville, Virginia

INTRODUCTION

The implementation of the man-machine interface
for question-answering systems, fact-retrieval systems
and others in the area of information management
frequently involves a concern with non-numeric pro-
gramming techniques. In addition, theorem proving
algorithms and more sophisticated procedures for
processing natural language text require a capability
to manipulate representations of non-numeric data
with some ease, and to pose complex structural ques-
tions about such data. _

This paper describes a symbol manipulation facility
which attempts to provide the principal capabilities
required by the applications mentioned above. In
order to reach this goal we have identified the following
important and desirable characteristics for a set of
non-numeric programming capabilities.

1. Conditional Expressions: Since the formal repre-
sentations of non-numeric information are ordinarily
defined inductively, it is to be expected that algorithms
to operate on such representations will also be specified
inductively, by cases. A conditional language structure
seems appropriate for a ‘“by-cases” style of program-
ming.

2. Storage Maintenance: Assemblers and other high-
er-level languages eliminate many of the troublesome
aspects of the storage allocation problem for the user.
Very little use has been made, however, of more so-
phisticated storage maintenance functions. Non-nu-

* This work was supported by the National Resource Analysis
Center in the Office of Emergency Preparedness.

21

meric computation is provisional in the sense that one
ordinarily wants to transform a piece of data only if

. that datum (or some other) has certain properties.

For example, a certain kind of English sentence with
a verb in the passive, may want to be transformed
into a corresponding sentence with an active verb.
Or, in a theorem proving context, two formal expres-
sions may have joint structural properties which permit
a certain conclusion to be drawn. In practice, however,
it is the rule rather than the exception that a datum
will fail to have the required property, and in such a
case one wishes that certain assignments of values had
never taken place. In order to accommodate these very
common situations the semanties of Vulcan are defined.
and implemented so that changes to the work space
are provisional. While this policy requires some com-
plex machinery to maintain internal storage in the
presence of global/local distinetions and of formal/
actual usage, these maintenance features give Vulcan
much of its power and flexibility.

3. Suppression of Bookkeeping Detail: A program-
mer should never need to concern himself with storage
allocation matters. Nor should there be troublesome
side effects of the storage maintenance conventions.
Specifically it should be possible to call a set of param-
eters by name in invoking a procedure or subroutine
so that changes to the values of actual parameters may
easily be propagated back to the calling context. In
such a case no special action should be required from
the programmer. In addition the details of the scan of
a symbol string to locate an infix substring should
never intrude on the programmer’s convenience. And
the use of local/global distinctions and formal/actual

22 Fall Joint Computer Conference, 1970

usage should require no special action in a recursive
situation.

4. Numeric Capabilities: It should be possible to
perform routine counting and indexing operations in
the same language contexts that are appropriate for
processing symbol strings. At the same time, more
complex numerical operations should be available, at
least by means of linkage to a conventional numerical
language.

5. Input/Output: Comprehensive file declaration
and item handling facilities should be included if the
non-numeric features are to be useful in realistic appli-
cations. Simple formatting conventions should be avail-
able to establish a correspondence between the fields
of arecord and a suitable set of symbol strings.

6. Interpretive Ezecution: There is little penalty
associated with the interpretive execution of non-
numeric algorithms, since the bulk of the system’s

resources are concerned with accommodating a sequen-

tial, fixed-field system to a recursive, variable-field
process. In addition, interpretive execution is easier
to modify on a trial basis, and permits some freedom
in the modification of source language syntax, provided
there is an intermediary program to convert from
source code to the internally stored form, suitable
for interpretive execution.

While there are other desirable features for a very
general programming language, these were accepted
as a minimum set for exploratory purposes. An overall
goal was to attain a reasonably efficient utilization
of machine resources. In this implementation study
it was felt desirable to achieve running speed at the
expense of storage utilization if a choice were required.
Since most non-numeric computing processes are
thought to be slow in execution, it was decided to em-
phasize speed whenever possible in the Vulcan system.

List processing certainly plays a central role in the
applications contemplated here. But the Vulcan lan-
guage was initially intended to be experimental and
to provide an exploration tool, and the implementa-
tion was therefore restricted to string manipulation,
elementary arithmetic and file handling.

OVERVIEW

The Vulcan language has been successfully imple-
mented on a Univae 1108 system running under EXEC-
8, and a comprehensive programmer’s reference manual
is available.! The emphasis in the implementation of
Vulcan has been on providing a powerful storage main-
tenance structure in place of complex and general ele-
mentary operations. From experience with applica-
tions this has been a satisfactory compromise. Ex-

travagant elementary operations have not been so
commonly needed, and when needed they are easily
supplied as specially tailored Vulcan procedures.
Storage maintenance for a recursive situation, on the
other hand, would be much more difficult to supply
in terms of more conventional programming language
structures.

Vulcan is an imperative rather than a functional
language. Since every call on a Vulcan procedure may
be treated both as an imperative assertion and as a
Boolean expression there are places in the language
design where the notion of truth value assignment
has a character not predictable from more conven-
tional usage. The conventions adopted to cover these
cases may be seen to be justified by their use in appli-
cations. :

Since Vulcan is a conditional language there are
no labels and no GOTO statements. In a word, the
logical structure of an algorithm must be expressed
in purely inductive terms.

For the numerical calculations associated with a
string manipulation algorithm there are rudimentary
arithmetic operations and conversions between alpha-
numeric and binary, and there is a comprehensive
range test. All of these operations are defined only for
binary integers. More complex numerical processing
may be invoked by coding a Fortran program with
parameters passed to it from Vulcan. While there are
restrictions on this facility it has been found to be
more than adequate for the situations encountered so
far.

A complete package of file processing functions is
available as an integral part of the Vulcan system.
Individual records can be read or written, files opened
or closed, temporary or permanent, on tape or mass
storage. By specifying a format in terms of lengths of
constituent substrings, a record can be directly de-
composed into its fields by a single call on the item
handling facility. Calls on the item handler are com-
patible with the Boolean character of a Vulcan pro-
cedure. .

There is an initial syntax scanner which puts the
Vulcan constructs into a standard form suitable for
interpretive execution. There are several constructs
which are admitted by the syntax scanner for which
there are no interpretable internal codes, and the
scanner is used to supply equivalent interpretable
internal codes for these situations. The ability to deal
with quoted material in any context appropriate to
an identifier is a case in point.

The scanner has been implemented so that a Vulcan
program may be punched on cards in free-field style.
There are no restrictions on the position of Vulcan
constructs on the program cards except that a dollar

VULCAN 23

sign (signalling a comment card) may not appear in
column 1, and columns 73-80 are not read.

The more common run-time errors are recognized
by the interpreter and there are appropriate error
messages. As with any non-numeric facility, restraint
and judgment are required to avoid situations where
excessive time or storage can be used in accomplishing
very little.

The entire Vulcan scanner/interpreter occupies
approximately 3900 words of core. A small amount of
storage is initially allocated for symbol tables and
string storage. When this storage is exhausted addi-
tional 5000 word blocks of storage are obtained from
the executive. Routine data processing computations
seem to make modest demands on storage, while a
theorem-prover may consume as much storage as is
given it.

A system written in Vulcan consists of a set of Vulcan
procedures. A procedure is a sequence of statements,
and a statement is a sequence of clauses. A clause is
conditional in character and consists of a series of basic
symbol manipulation functions, Input/Output opera-
tions, a limited set of arithmetic facilities, and pro-
cedure calls. The language is recursive in execution
so that a call on a procedure is executed in a context
which depends on the data available at the time the
call is made. The distinctions between local and global
identifiers and between formal and actual parameters
that are common to Algol are explicitly utilized in
Vulcan.

LANGUAGE DEFINITION

Symbol strings

A string is a sequence of zero or more occurrences
of characters from the UNIVAC 1108 character set.
In particular, the empty string, with zero character
oceurrences, is an acceptable string. A string is nor-
mally referenced with an identifier and an identifier
to which no string has been assigned is said to be im-
proper. (One common run-time error results from an
attempt to use an improper identifier in an incorrect
way.) A symbol string may also be quoted directly in
the context of an instruetion. Except for the left-hand
side of an infix or assignment operation, anywhere that
a string identifier may be used; a quoted literal string
may be used in place of that identifier. For example,
both

(1) WRITE (‘ABC’)

and
(2) X = ‘ABC’, WRITE (X)),
cause the string ‘ABC’ to be printed.

A facility exists to assign a literal string to an iden-
tifier:

1) X = ‘ABC’
(2) Y = (assigns the empty string to Y)

Quoted strings may be associated together from left to
right. Suppose one wishes to assign the following literal
string:

"RECORDS CONTAINING ‘ABC’ ARE LOST.

The following literal assignment will create and store
the above string:

X = ‘RECORDS CONTAINING’ “ * ‘ABC’ ©’
‘ARE LOST.

Spaces outside quote marks are ignored by the
translator. Note that five sub-strings are quoted in
the above literal assignment:

RECORDS CONTAINING

I3

ABC

ARE LOST.

The string value of an identifier is called the referent
of that identifier and it may be changed as a result
of an operation. Note that the quote mark itself is
always quoted in isolation.

Language structure

The instructions in Vulcan are embedded in ex-
pressions which, like instructions, come out true or
false. A clause is an expression which has an antecedent
and a consequent part, separated by a colon, and
bounded by parentheses. The instructions are coded
in the antecedent and consequent parts and are sep-
arated with commas. For example,

(¢17 ¢2) e vy ¢n:P17 P2} L] Pm)r
where the ¢; and P; are Vulcan instructions.

A clause comes out true if all the instructions in the
antecedent part, executed from left to right, come out

ture. In this case, all the operations in the consequent

24 Fall Joint Computer Conference, 1970

part are executed, from left to right. For example, the
clause

(¢1, —¢2:P1)

will come out true and P; will be executed just in case
instruction ¢; comes out true and instruction ¢, comes
out false (its negation making it true).
A clause with no antecedent part always comes out
true:
(:Py, Py)

The consequent part of a clause may also be empty:

(¢1; ¢’2)

A clause with neither an antecedent nor a consequent
part comes out true and performs no computation.

()

A statement is a series of clauses enclosed in square
brackets:

[(¢1:P1) (¢2:P) « - ()]

The consequent part of at most one clause will
be executed within a statement. Starting with the
left-most clause, if a particular clause comes out true
(as the result of all the tests in its antecedent part
coming out true), then, as soon as execution of all the
operations in the clause is finished, the remaining
clauses are skipped and execution begins in the next
statement. If a particular clause comes out false (as
theresult of some test in its antecedent part coming out
false), then, execution begins on the next clause. If
any clause comes out true in a statement, then, the
statement is considered to come out true. If all clauses
in a statement come out false, then, the statement is
considered to come out false.

A procedure body is a sequence of statements
bounded by angle brackets, { and). Each statement
in a procedure body is executed once in turn regardless
of the truth-value of the individual statements.

A procedure consists of the word PROCEDURE,
a procedure name, a list of formal parameters, the
necessary local and global identifier declarations, and
a procedure body. The truth-value of a procedure is
set to be the same as the truth-value of the last state-
ment in the procedure body. For example, the form
of a procedure might be:

PROCEDURE T4(X);
LOCAL X1, X2; GLOBAL Y1, Y2;
([(¢2:P1)
(¢e: Py)]
[(¢s:P3)])

A program is a set of procedures with a period (.)
terminating the last procedure. The initial procedure
is executed first and acts as a driver or main program
for the system. All other procedures are executed only
by means of ecalls to them. The completion of this
initial procedure terminates the run.

String manipulation operations

There are two basic string manipulation instructions,
the concatenate operation and the infix test.

Concatenation

Conecatenation is used to build strings out of other
strings and the operation always comes out true. The
operation has the following format:

X =X1.X2.... XN,
where X, X1, through XN are identifiers. For example:
1) X = Y1.X1.Y2.Z
(2) X = T1.‘A QUOTED VALUE’.USE

The strings referred to by the identifiers and literal
strings on the right-hand side of the assignment symbol
(=) are concatenated and the resulting string is as-
signed to the identifier on the left. In the operation,
each of the identifiers and literal strings to the right of
the equal sign must be separated with a period.

The identifier on the left may appear several times
to the right of the equal sign. In this case, it retains
its original referent until the entire concatenation is
completed. The resulting concatenated string is then
assigned to the identifier to the left of the equal sign.
For example, if X is ‘AB’ and Y is ‘C’, then the opera-
tion X = Y.X.Y.X.Y results in setting X to ‘CAB-
CABC'. The identifier on the left may be either proper
or improper, but each identifier on the right must be
proper.

Infix test

The basic test on a symbol string is the infix test,
and is written

1) X/*Y.*
(2) Z/*:ABC’.*

In the first example, the test comes out true if the
referent of Y occurs as an infix in the referent of X,

VULCAN 25

and comes out false otherwise. In the second case, if the
literal string ‘ABC’ oceurs in the referent of Z,
then the test comes out true, and false otherwise. The
asterisks play the role of dummy identifiers to take
up the residue prefix and residue suffix substrings de-
fined by the occurrence of Y in X.

There are three variants of this test, typically writ-
ten X/Y.* X/*Y and X/Y, asking whether (the
referent of) Y begins X, or ends X, or if they are equal,
respectively. Finally, EMPTY (X) asks of the referent
of X is the empty string.

In each of the above operations, all identifiers must
be proper.

A generalization of the infix test occurs when one
wants to retain, for later processing, the residue prefix
and suffix substrings that are defined as a consequence
of the infix test coming out true. For these purposes
the test may be written as follows:

X/U.‘ABC.V
or

X/UY.V

where U and V are improper and X and Y are proper.
If there is more than one occurrence of the referent of
Y in X, Vulcan identifies the left-most oceurrence.
For example, if the referent of X is ‘ABCDEFGDEK’,
one could ask if X contains the string‘DE’:

X/UDE.V

The test will come out true and assign the string ‘ ABC’
to U and the string ‘FGDEK’ to V. If an infix test
fails, then the identifiers U and V remain improper.

Procedure calls and local/global distinctions

Procedure calls and truth-value control

Vulcan procedures are subroutines and the procedure
call is the mechanism for calling a subroutine. Execu-
tion of Vulcan procedures is strictly recursive so that
locally declared identifiers are recreated at each new
level of recursion. Parameters to the procedure are
also reconstituted at each level of execution. Distinct
versions of identifiers and parameters are preserved
at each level so that when execution returns to a given
level of recursion, the versions generated by subor-
dinate calls are lost, higher-level versions are still
retained in a push-down store, and only the current
level versions are available to the procedure.

A procedure is given to the Vulcan system with a

(possibly empty) set of formal parameters as follows:

(1) SUBR
(2) T(A, B, C)

The procedure in (2), for example, may be called with
any identifiers in place of A, B, C, respectively. Thus,
the procedure call may be written:

TX, Y, Z)

At execution time, the Vulcan interpreter makes copies
of the strings associated with X, Y, Z and assigns them
temporarily to A, B, and C, respectively. The pro-
cedure is then executed on its formal parameters:
A, B, C. When execution is completed, the referents,
if any, of A, B, and C are copied back to X, Y, and Z,
respectively, subject to the condition that the pro-
cedure call comes out true. If the procedure call comes
out false, the strings are not copied back and X, Y,
and Z remain as they were prior to the procedure
execution.

The procedure call is the sole mechanism for calling
a subroutine in Vulcan; and local identifiers, global
identifiers, and formal parameters, as well as quoted
literal strings, may be included in a list of actual param-
eters.

A procedure can be caused to be repeated until the
call comes out true (or false). This allows an iterative
facility which sometimes uses less storage than an
equivalent recursion.

An asterisk preceding a’ procedure call implies that
the procedure is to be executed repeatedly until the
procedure call comes out true.

*RECORD (X, Y, Z)

An asterisk with a minus sign implies that the pro-
cedure is to be repeated until the negation of the pro-
cedure call comes out true (i.e., “repeat until false”).

* —RECORD (X, Y, Z)

In a conventional programming language the logical
flow of execution is controlled by branch instructions
and unconditional transfers. Since there are no labels
in Vulcan, there are no transfer instructions. The flow
through a Vulcan program is controlled by causing
certain clauses, statements or procedures to come out
true in some cases and false in others. The conditional
nature of a clause allows the programmer to choose be-
tween alternative paths, and the procedure call allows
either path to be as complex as may be required. The
beginning user of Vulcan should make special note of the
fact that control is handled in terms of certain con-

26 Fall Joint Computer Conference, 1970

structs coming out true or false, and this is a definite
departure from conventional programming practice.
With this convention, it is sometimes. useful to be able
to force the last statement of a procedure (and hence
the procedure) to be false although some clause in it
has come out true. This is done by the FALSE com-
mand. The FALSE operation, if executed in any clause,
will cause control to skip to the end of the statement
and will set the truth-value of the statement to be
false. A generalization of the FALSE command causes
control to pass immediately to the end of a procedure.
The command RETURN causes exit of the current
procedure with true, and the command RETURNF
causes exit of the current procedure with truth-value
false.

Local, global distinctions, and clause workspace

A procedure S is in the scope of a procedure T if
T contains a call on S, or else if T calls some other
procedure which in turn has a call on S, or else, ete.

Suppose it is desirable that an identifier be declared
in the procedure T and be available to the procedure
S without including it as an actual parameter in a
call on S. Such an identifier will be available through-
out the scope of T if it is declared in T to be GLOBAL.
In other words, that identifier will be available in T,
in all the procedures which are called by T, in all the
procedures which are in turn called by those, and so
on. An identifier which is not declared global is then,
by contrast, a local identifier, and in all cases it must
be so declared with the reserved word LOCAL. Such
an identifier is available only within the procedure
in which it is declared and its referent is not available
in any of the procedures which are called by it, except
as an actual parameter. Each identifier, then, must
be declared as either local or global, or implicitly de-
clared by inclusion in a formal parameter list.

Each time a procedure is called, its declared identi-
fiers are constituted afresh so that if a procedure calls
itself recursively its declared identifiers have separate
and distinet copies at each level of recursion.

The local, global distinction of identifiers is further
used in that, within the execution of a clause, changes
to the referents of local identifiers and formal parameter
identifiers are contingent upon the final truth-value
of the clause. However, changes to the referents of
global identifiers are not subject to this condition. If
a clause comes out true, changes to all identifiers are
permanent. If a clause comes out false, changes to
global identifiers are permanent but changes to local
identifiers and formal parameters are obliterated. In

effect, the execution of a clause is carried out in a tem-
porary workspace so that changes made to any particu-
lar identifier are. made permanent just in case one of
the following conditions holds: the clause containing
the assignment came out true or the identifier in ques-
tion was global.

Storage is managed by dividing it into two regions—
one for identifiers and their properties, and another
for. strings themselves. An implementation of the
storage requirements of Vulcan is inevitably complex.
We note here that experience in using Vulcan led .to
the adoption of a garbage collection policy that is
very similar to that described by Kain.2

Arithmetic operations

The arithmetic facilities provided in Vulcan, while
not complex in structure, allow for most counting,
averaging or testing that is needed. No floating point
instructions are provided, only integer arithmetic.
Normally, the representation of a binary integer is
a string which is six characters (i.e., 36 bits) in length.

A binary integer string may be converted to its
Field Data equivalent with the command ALPHA
(X), where X is the identifier for the binary integer
string. As a result of the operation, X is the identifier
for a string of numeric characters which is the value
equivalent of the binary integer. If the referent of
X is a negative integer, a minus sign (—) is prefixed
to the converted string; however, no sign is attached
for a positive integer. Although a Vwulcan binary in-
teger is a string six characters in length, any string <
six characters may be interpreted as a binary integer.
Hence, the ALPHA (X) instruction allows the re-
sulting referent of X to have a length of from one to
six characters. For example, if the twelve-bit (two-
character) field extracted from a data file is binary,
then it may be converted to its alphanumeric equiva-
lent with the ALPHA (X) command. No other arith-
metic operation, however, allows this special repre-
sentation of a binary integer. An error results if X is
improper, empty, or is more. than six characters in
length. ALPHA (X) always comes out true.

Inverse to the ALPHA (X) operation, a string of
numeric characters can be converted to a binary inte-
ger with the BINARY(X) operation. The legal form
for a numeric string to be converted to binary is a plus
(+) or minus (—) sign or neither, followed by a purely
numeric field of at least one and at most 11 characters.
Blank characters may precede the sign, if any, may
intervene between the sign and the numeric field, and
may trail the numeric field. For example, the following

VULCAN 27

are well-formed numeric strings (the ‘A’ symbol being
interpreted as the blank character).

(1) ‘123

(2) ‘AM9AA”

(3) ‘A+A68A°

) <0

The following are not well-formed numeric strings.

1) ‘12 ¥

(2) ‘AA9.000

(3) ‘A$A19.24°

(4) ‘+—86’

If the string to be converted is not well-formed, then

BINARY (X) comes out false. If it is well-formed; then

the command comes out true and the referent of X is

the converted binary integer string, six characters in

length. If X is improper, error termination occurs.
Arithmetic operations are listed below.

(1) ADD (X,Y,Z) means X =Y+ Z
(2) SUB (X,Y,Z) means X =Y —Z
3) MPY (X,Y,Z) means X =Y *Z

4) DIV X,Y,Z means X=Y/Z
(5) SETZRO (X) means X =0

where the identifiers Y and Z must have referents that
are binary integers, six characters in length. Each

operation always comes out true. The operation DIV

(X, Y, Z) yields the integral quotient in X and discards
the remainder.
There is one numeric test:

RANGE (X, Y, Z),

where the identifiers X, Y, and Z must be binary inte-
gers, six characters in length. RANGE(X|, Y, Z) comes
“out true just in case X <Y < Z and comes out false
otherwise.

The following Vulcan program illustrates the basic
operations and the language structure presented thus
far.

In this example, as part of a fact retrieval query
scheme, the task is to simplify an English language
sentence by replacing all occurrences of the string

‘GREATER THAN’ by the string ‘>’, and preserve
the original.

Procedure INITIAL sets the values for the iden-
tifiers W, X, and Y and then calls procedure REP,
passing in the actual parameters W, X, Y, and Z to
formal parameters A, B, C, and D. (Note that W, X,
and Y are proper and that Z is improper when the call is
made.) Procedure REP then replaces all occurrences of
string B in string A with string C and calls the new
string D. Notice that if no occurrence of B is found
in A, then D is simply set to the referent of A. Called
with the input given in procedure INITIAL, REP will
set the referent of Z to ‘LIST ITEMS IF AGE > 24
AND WEIGHT > 150’.

PROCEDURE INITIAL;
LOCALW,X,Y, Z;

(I(: W = 'LIST ITEMS IF AGE GREATER THAN
24 AND WEIGHT GREATER THAN 150/,

X = 'GREATER THAN’, Y ='>’, REP(W,
X, Y,)0

PROCEDURE REP(A, B, C, D);

LOCAL X1, X2;

((A/X1B.X2 : REP(X2, B, C, D), D = X1.C.D)
(:D=A)])

INPUT OUTPUT OPERATIONS

The Input-Output operations in Vulcan fall into
two categories: (1) card reading and line printing
operations, and (2) file handling operations (for tapes,
Fastrand files, etc.).

Card read and line print

There. are standard operations to read a string from
a card and to write a string on the line printer. The
instructions are as follows:

(1) WRITE (X1, ..., XN)
(2) PRINT (X1, ..., XN)
(3) READ (X1, ..., XN)

WRITE causes the referents of the strings for each
identifier in the list to be printed on successive lines.
PRINT, for each identifier in the list, writes out the

28 Fall Joint Computer Conference, 1970

[

identifier, followed by an sign, followed by the
string. If a string is longer than the number of print
positions on the line, remaining characters of the string
are printed on subsequent lines.

For each identifier in the list, READ reads the next
card and assigns the string of characters on the card
to the next identifier. Trailing blanks on a card are
deleted before assigning the string to the identifier.
If a blank card is read, the empty string is assigned
to the identifier.

The WRITE and PRINT operations always come
out true. READ comes out false if any EXEC 8 con-
trol card is read, but comes out true otherwise.

There is a modified version of READ available for
use with remote terminal applications which avoids
unwanted line feeds and carriage returns.

File handling operations

The traditional concept of reading and writing items
(logical records) and blocks (physical records) is ex-
tended in Vulcan to provide for the handling of in-
dividual fields within items. An item in a file is thought
of as a single string which may be decoded into various
substrings, or fields. Alternatively, a set of substrings,
or fields, may be grouped together to form an item
which is then put into a file. These two functions are
accomplished by the ITMREAD and ITMWRITE
operations, respectively. Supplied on each ITMREAD
or ITMWRITE request is the name of the file to be
processed, a format which is a definition of the fields
within the item, and a list of identifiers. The specific
relation between the format and the list of identifiers
in each particular request is the subject of Part B of
this section. The general sequence of commands for
manipulating data files in Vulcan is as follows. Prior
to executing the Vulcan program, buffer storage re-
quirements must be supplied with the FILE statement.
Each file to be processed must be assigned, either ex-
ternally or dynamically, through the CSF instruction
(described later). The file must be opened before reading
or writing and then closed after processing. A file may
be reopened after it is closed, and it need not be reas-
signed unless it has been freed. The Vulcan file handling
capability employs the Input-Output Interface for
FORTRAN V under EXEC 8 described in the National
Resource Analysis Center’s Guidebook, REG-104.
The user is advised to read this manual before using
the Vulcan file handling commands. The instructions
for file handling and their calling sequences follow.

1. OPEN: opens a file for processing.
CALL: OPEN(FN, MODE, TYPE, LRS, PRS,

LAF, LAB), where
FN = File name (1-12 characters)

MODE = Mode of operation (1< MODE<7)

TYPE Type of blocks 1<TYPE<5)

LRS Logical record size, for fixed size
records. (1<LRS<PRS). If
LRS =‘0" then variable size
records are indicated.

PRS = Physical record size (1<PRS<N,
where N is buffer size stated on
the FILE declaration).

LAF = Look-ahead factor (is ignored
if LAF = {empty))

LAB = Label (is ignored if
(empty)).

LAB=

Only the first five arguments are necessary for
opening a file. The label field (LAB), or the label (LAB)
and look-ahead factor (LAF) fields may be omitted
in the call. The OPEN request comes out true if the
operation is completed normally and comes out false
otherwise. I/O status information may be retrieved
with the STATUS instruction, deseribed later in this
section. For example, the Vulcan instruetion

OPEN(‘TEACIV, 2, ‘2, ‘98, 28")

will open an output file named ‘TEACH’ (with fixed
size blocks with no block counts and no sum checks)
of 28-word records each and 28-word items (i.e., one
item per physieal record).

2. CLOSE: closes a file that has been opened.
CALL: CLOSE (FN, TYPE), where
FN = File name (1-12 characters)
TYPE = Close type (1<TYPE<S5).

CLOSE always comes out true. For example, the in-
struction

CLOSE(‘TEACH’, 4")
will close file “TEACH’, without rewind if ‘TEACH’

is a tape file, and with rewind if “TEACH’ is on a mass
storage device.

3. REWIND—rewinds a file.
CALL: REWIND (FN, where
FN = File name (1-12 characters).

The REWIND instruction rewinds a tape or drum

VULCAN 29

file that has been opened with the OPEN statement.
It always comes out true.

4. ITMREAD and RREAD-—serve to input a
new record from a file.
CALL: ITMREAD (FN, F, List), where
FN = File name (1-12 characters)
F = Format
List = List of identifiers.
CALL: RREAD (FN, IN, F, List), where
FN = File name (1-12 characters)
IN = Item number (binary integer)
F = Format
List = List of identifiers.

ITMREAD reads the next available item from the
file while RREAD reads the item in item position IN.
IN=1 causes the first item in the file to be read while
IN=0 is equivalent to an ITMREAD command (i.e.,
a sequential read). The ITMREAD and RREAD
commands come out true if an item is read and come
out false if an end-of-file or an abnormal status is en-
countered.

5. ITMWRITE and RWRITE—serve to output
arecord to a file.
CALL: RWRITE (FN, IN, F, List), where
FN = File name (1-12 characters)
IN = Item number (binary integer)
F = Format
List = List of identifiers

ITMWRITE writes into the next available item
position of the file while RWRITE writes into the item
position specified by IN. IN'=1 specifies the first item
and IN=0 causes RWRITE to function like ITM-
WRITE (ie., write into the next available item po-
sition). ITMWRITE and RWRITE come out true
if the task is normally completed and come out false
otherwise.

6. STATUS—returns the status of an operation.
CALL: STATUS(X), where
X = Identifier having the returned status
as its referent.

The STATUS instruction is used only in connection
with the OPEN, ITMREAD (RREAD), ITMWRITE
(RWRITE), and CSF operations. Bach of these in-
structions is a link to the executive system where a
completion status is returned. If the particular task
called upon terminates normally, then, the Vulcan

instruction is set true, indicating normal completion.
If the task invoked is not completed normally (e.g.,

‘an end-of-file is encountered when reading), then,

the Vulcan instruction is set false, indicating an ab-
normal status returned from the EXEC. The particular
value of the status may be retrieved with the STATUS
(X) instruction. The identifier X will have as referent
a six-character binary integer string, which is the status
code of the last operation performed. The STATUS
instruction itself always comes out true.

7. FILE—is a declaration of file facilities needed.
Format: FILE n, m; where

n = the number of files in use simultaneously
in a Vulcan program

m = the number of machine words of the

maximum physical record size of any
file.

The FILE statement for any Vulcan program may
appear in the declarations of any Vwulcan procedure,
since it is really a meta-command to the Vulcan pro-
essor and not an executable Vulcan instruction. If
more than one file statement is encountered, then, the
last one processed by the translator is entered and
earlier ones ignored. If no FILE statement is encoun-
tered, then, no buffer space is allocated and no files
may be opened.

Tiem and field processing

The main result of Vulecan’s ITMREAD (RREAD)
is to assign the characters in specified fields of an item,
sequentially, to a list of identifiers. The ITMWRITE
(RWRITE), alternatively, constructs an item from the
strings of a list of identifiers, again, according to a
specification of field sizes.

The Format identifier refers to a string whose legal
construction is specified as follows:

(format): : = ({phrase list })

(phrase list): : = (phrase)| (phrase list), (phrase)
(phrase): : = (X-phrase)| (S-phrase)| (U-phrase)
(X-phrase): : =X ({integer)

(S-phrase): : =S (integer)

(U-phrase):: =TU (integer)

Two typical legal formats are ‘(S24, U24, X19, S4)’
and (X1, $2451, U18)".

The format acts as a specification of field sizes to
read or write an item. On output of an item, the (X-
phrase), X19, means to skip over the next 19 charac-
ters in the item. (Effectively, this outputs 19 @ signs

30 Fall Joint Computer Conference, 1970

to the item.) The (S-phrase), 8240, causes the referent
of the next list identifier to be written into the next
240 character positions of the item. If the string is
shorter than the field size (i.e., <240 characters),
binary zeros (@ signs) are filled out to the right. If the
string is longer than the field size specified by the
(S-phrase), an error termination occurs. On output,
the (U-phrase) is exactly like the (S-phrase).

On input of an item, the (X-phrase), X19, means
to skip the next 19 characters in the item. The (8-
phrase), 8240, means to assign the next 240 characters
in the item to the next list identifier, but with any
trailing binary zero characters (@ signs) deleted. The
(U-phrase), U240, is like the (S-phrase) but causes
unconditional aceeptance of all of the next 240 charac-
ters (specifically including @ signs).

The (S-phrases) and (U-phrases) of a format string

match up in a one-to-one correspondence with the list
of identifiers in the ITMREAD or ITMWRITE re-
quest. It need not be, however, that the number of list
identifiers equals the number of (S-phrases) plus
(U-phrases). The shorter of the two lists terminates
the I/0 request on that item.

To illustrate the ITMREAD, suppose we define the
following item: (Note that the ‘A’ symbol is used for
the blank character.)

Word
1 A A A C 1 9
2 A N R A C /
3 M C L @ A A
4 O F F I C E
5 A O F A E M
6 E R G E N C
7 Y A4 P R E P
8 A R E D N E
9 S 8 @ @ @ @

After execution of the following clause,
(T1 = ‘FILENAME’,
T2 = ‘(X4,82,X1, U9, X2,836),

ITMREAD (T1,T2,A, B,C,D):)
the strings A, B, C, and D will be defined as follows:
A:19 |
B:NRAC/MCL@

C: OFFICEAOFAEMERGEN CYAPREPAREDN ESS
D: (holds its previous value).

The following Vulcan program illustrates more
generally the file processing techniques presented. The

task is simply to catalog a Fastrand file, copy a tape
file into it, and terminate; or, if the Fastrand file is
already cataloged, simply terminate.

The first clause attempts to assign file ‘FAST’; and,
if it is accepted, then the file is already catalogued and
the program will terminate. If the file is not already
catalogued, then another assign is made, this time re-
questing that’ FAST” be catalogued when it is freed.
If it cannot be assigned again, a message is printed
and the program terminates. In the second statement
the file ‘TAPE’ is assigned, calling for the mounting
of tape Ul1234. If this assignment cannot be made,
then the run terminates with a message indicating the
tape file could not be assigned. In the third statement
both files are opened successfully, or else a message
is printed that an open request failed and the run is
terminated. Once the files are opened, procedure COPY
is called until the negation of the procedure call comes
out true. That is, as long as the ITMREAD command
comes out true, then an item of data is written into
file ‘FAST’ and procedure COPY comes out true,
making its negation come out false. Hence, COPY is
to be called again. When ITMREAD finally comes out
false, the status of the last I/O operation is checked
to determine if an EOF was detected or an error oc-
curred. '

PROCEDURE MAIN;

FILE 2,1200; GLOBAL FN1, FN2, FORMAT, B2;

([(CSF (‘@ASG, AFAST,F2’) :

WRITE (‘ALREADY ASSIGNED’), RETURN)

(CSF(‘@ASG, PC FAST, F2/ /TRK’) :)

(:WRITE (‘CANNOT ASSIGN FASTRAND FILE),
RETURN)]

[(CSF(‘@ASG, T TAPE, T, U1234’) :

FN1=‘TAPE’,FN2=‘FAST’, B2=‘2?’", BINARY(B2))

(:WRITE(‘CANNOT ASSIGN TAPE FILE’), RE-
TURN)]

[(OPEN(FN1,4’ 4’ 100’ ,1200°),

FORMAT = “(U600)’,* —COPY, CLOSE (FN1, ‘¢),
(FN2, ‘6’))

(: WRITE(‘CANNOT OPEN’))])

PROCEDURE COPY; LOCAL X;

((ITMREAD (FN1, FORMAT, X):ITMWRITE
(FN2, FORMAT, X))

(STATUS(X), RANGE (B2, X, B2):

WRITE(‘EOF DETECTED’),FALSE)

(: WRITE(‘ERROR IN READ’), FALSE)]).

ADDITIONAL VULCAN COMMANDS

In addition to the string and file handling and arith-
metic facilities already deseribed, Vulcan includes

VULCAN 31

several other convenient instructions which we men-
tion here. There is a command to decompose a string
based on character position rather than character value,
a command to compute the length of a string, and a
command to obtain elapsed CPU time in 200 micro-
second increments.

There is an instruction to send a message directly
to the EXEC 8 executive request function, a page eject
command and a command to obtain a Teletype break
key contingency interrupt status. There is a trace fa-
cility for observing the sequence of procedure calls
obeyed in execution and their resulting truth values. A
standard Fortran subroutine may be ealled in Vulcan,
which in turn may, under programmer direction, call
other Fortran programs. The legal parameters to this
standard program must be strings whose lengths are
non-zero multiples of six in length.

Finally, there is a DEFINE facility in which the
user may define a macro string with parameters. And
a respectable set of syntax and run-time errors is in-
cluded providing suitable messages.

APPLICATIONS

Vulean has been successtully applied to several
problems. A theorem proving system based on Robin-
son’s resolution principle* has been implemented,*
and a trial system for the translation of a simplified
subset of German has been studied.® There is a general
File Management System® which allows remote ter-

minal communication in restricted English for the-

purposes of changing and interrogating any files which
can be read by the 1108 executive. Fact retrieval sys-
tems tailored to special applieations have been con-
structed, and a large scale command and control ac-
tivity has used Vulcan procedures for the man-machine
interface.

SUMARY OF INSTRUCTIONS AND SYNTAX

1. Infix test: X/AY.B
X/*‘ABC’.*
X/*Z1
X/Z1.*
X/Y

2. Empty test:
3. Assignment:

4. Concatenation:

5. Procedure call:

EMPTY (X)

X =‘ABC’

X= 77?7
X=Y1.Y2.Y3.Y4
X =

T(X,Y,Z)

*GO

*_FETCH

6. Card read:
7. Line print:

8. File Handling:

9. Arithmetic operations:

10. Arithmetic test:

11. Truth-value control:

12. Miscellaneous commands:

13. Identifiers:

14. File Facilities:
15. Procedure:

FLINK(X1,X2)

READ(X,Y,Z)
TREAD(A,B)
WRITE(I,J,K)
PRINT(X,Y,Z) :
OPEN (FN,MODE,
TYPE,LRS,PRS)
CLOSE (FN,
TYPE)
REWIND (FN)
ITMREAD (FN,F,
A,B,C)
RREAD (FN, IN,
F,A,B,C)
ITMWRITE (FN,
FX,Y,Z)
RWRITE (FN, IN,
FX,Y,Z)
STATUS(X) -
ADD(X,Y,Z)
SUB(X,Y,Z)
MPY (X,Y,Z)
DIV(X,Y,Z)
SETZRO(X)
BINARY (X)
ALPHA(X)
RANGE(X,Y,Z)
—~RANGE(X,X,Y)
FALSE
RETURN
RETURNF
DECODE (X,F,A,
B,C)
CSF (‘@ASG, T,
F, T, U1234’)
LENGTH(X,Y)
TIME(X)
ITMSET(PAGE)
ITMSET (CON-
TIN,X)
TRACEN (MAIN,
TGO,PR)
TRACEP (MAIN,
TGO,PR)
TRACEF
LOCALX,Y,Z;
GLOBAL G1,TRU;
LOCALK;
FILE 3,1792;
PROCEDURE T
(K,K2); .
LOCAL B1,B2;
GLOBAL 74; GLO
BALONE;

32 Fall Joint Computer Conference, 1970

FILE 1,500;
...
(ool)]
[C..:..0D

ACKNOWLEDGMENTS

Conditional expressions are familiar from LISP,?
and many of the features of Vulcan originally appeared
in CHAMP.? The infix test and its variants are ele-
mentary versions of the pattern-matching facilities
in SNOBOL® but are much less comprehensive. File
handling facilities are direct calls on the NRAC Input-
Output package,’® and its manual is available for use
with Vulcan.

The authors are indebted to Edgar M. Cagley and
to Richard A. Stanley for their participation in the
development of Vuwlcan. Mr. Cagley designed many
trial applications to prove the usefulness of the lan-
guage and Mr. Stanley prepared the syntax scanner
and other significant features. The management of the
National Resource Analysis Center supported the
project enthusiastically from its inception.

REFERENCES

1 R H VAUGHAN
Vulcan-programmer’s reference manual
NRAC Executive Office of the President Office of

Emergency Preparedness Washington D C TM-209
April 1970

2 R Y KAIN
Block structures, indirect addressing, and garbage collection
CACM 12 July 1969 395-398

3 J A ROBINSON
A machine-oriented logic based on the resolution principle
J ACM 12 1 Jam. 1965

4 T G HAMRICK
First-order logic on the machine
Master’s thesis University of Virginia Charlottesville Va
June 1969)

5 G P HILL
Syntactic analysis of stmple German sentences using the
Vulcan programming language
School of Engineering and Applied Science University of
Virginia Charlottesville Va May 1970

6 N J RAY
Information management system
NRAC Executive Office of the President Office of
Emergency Preparedness Washington D C TM-208
May 1970

7 J McCARTHY et al
LISP 1.5 programmer’s manual
The MIT Press Cambridge Mass 1962

8 E F STORM
CHAM P-character manipulation procedures in Algol
Comm ACM 11 Aug. 1968

9 D J FARBER et al
SNOBOL, a string manipulation language
J ACM 11 2 Jan. 1964

10 R FEDDER

Input-output interface for Fortran V under EXEC-8
NRAC Executive Office of the President Office of
Emergency Preparedness Washington D C REG-104
Sept 1969

On memory system design

by ROBERT M. MEADE

Cogar Corporation
Wappingers Falls, New York

INTRODUCTION

A hierarchy of information accessibility exists in every
system. Even simple calculators employ a two-level
hierarchy consisting of internal registers and external
key-entered data. In a typical computer system we
find a multilevel hierarchy extending from working
registers through random-access main-memory, to
direct access devices, to sequential access devices, and
on outward to off-line archives.

System design always consists primarily in speci-
fication of the hierarchy of information, of information
media, and of the controls for their interconnection.
Thereafter, it remains only to define the information
and the operations upon it to completely specify a
system.

The value of information is reflected in the frequency
with which it is referenced.! The system design problem
is to match the relative values of all information to the
relative access times of storage media. This must be
a dynamic matching because the value of the infor-
mation in the system changes rapidly with particular
activity. The hierarchy control hardware and much
of the operating system software exist to accomplish
the matching.

An “optimum” system can be either one which will
perform a given application in a given amount of time
at the lowest cost, or one which will perform the given
application at a minimum cost/time product. Because
of the number of alternatives for each element of the
system there will be a set of nearly optimum configura-
tions. Thus there is no one best system design. The
optimum hierarchy will be determined by the appli-
cation and available elements rather than by a general
theory. However, the concepts discussed below can
aid in choosing the best elements for a given applica-
tion.

There are two natural boundaries in the hierarchy of
information. The first occurs at the man/machine
interface; on one side exists the information that can

33

be electronically called by a program; on the other
side resides information that can only be supplied by
a human. This may be machine-readable such as a
library reel of tape, or it may be first-hand input from
a terminal. The second boundary occurs between in-
ternal information that is directly addressed and ex-
ternal information that must be transferred from an-
other storage mechanism into the directly addressed
memory. This is commonly the boundary between
main memory and electro-mechanical storage. The dis-
tinguishing characteristic is that program instructions
and data can be executed only from internal storage.
External information must be moved into the internal
memory by an explicit input/output command, gen-
erally executed by a logically independent transfer
channel.

The definition of this internal-external boundary is
particularly critical. The addressing architecture of the
system determines the range of possible internal
storage. The channel command structure determines
the flexibility, autonomy and concurrency of the ex-
ternal storage system.

From a user’s point of view, this internal-external
distinetion is arbitrary and awkward. For him it is an
additional nuisance in the already cumbersome practice
of referring to information by its system’s location. It
is more natural for him to refer to information by
name in an inverse hierarchy of file, record, field, which
are logical data entities. This hierarchic information
structure is fundamental to the design of the storage -
hierarchy.

Systems simulating memory of a single level have
been designed in order to provide a more natural pro-
gramming situation. These are called virtual memory
systems because they allow the programmer to operate
as though physically external memory were the in-
ternal program space. The physically internal memory
is made invisible or transparent to him by the software
used to control the flow of information. Hardware
implemented or assisted systems have been proposed,

34 Fall Joint Computer Conference, 1970

generally based upon the use of associative memory
techniques. Thus a discussion of memory hierarchy
is a discussion of virtual memory systems, and con-
versely.

The multiple level hierarchy exists because of the
cost of storage. If the storage device with the fastest
access time were also the least expensive, a system
would employ a single level of memory. Levels are
added only as the effective performance/cost ratio
of the system is improved thereby. Thus, direct access
devices are used in addition to magnetic tapes because
their shorter access time enhances system performance,
Recently two-level implementation has similarly en-
hanced cost-effectiveness of main ‘memories, as in the
IBM System 360, Model 85.2.%

History

Basic concepts for memory hierarchy date from
around 1960. The first system to employ transparent
two-level memory was the Atlas.45 This system used
random-access core memory as a buffer backed by a
large amount of drum storage. The programming space
was implemented in the latter; the information was
transferred in and out under a combination of hard-
ware-software control in 512-word blocks or pages.
The performance was limited by the long access time
of the drum combined with the small capacity of the
core.

From 1961 to 1963 high performance systems em-
ploying various buffering schemes were developed.
Based upon operational/experience with LARK and
STRETCH, the CDC 6600 and the IBM 360/91-95
were designed. Both of these employ a register stack
to buffer the flow of information from and to main
memory. This comprises a form of virtual memory
which is controlled by logic making instantaneous
analysis of the microstructure of the executed program.
The buffer algorithm is machine-design dependent.
In the model 90’s,$ this approach provided a rather
general virtual memory for the instruction stream
through the incorporation of the ability to do full
inner loops of instructions from the buffer. However,
no such loop exists for data.

Meanwhile, by 1962, the Atlas structure had been
analyzed by Bloom, et al.,” with respect to high-per-
formance system potential, with the result that they
proposed the use of a relatively small, but very fast,
main memory buffer as “look aside”. This buffer was
to use an associative algorithm to map blocks of the
main memory for general instruction and data residence.
Conceptually, this was very close to the configuration
later implemented by the IBM Model 85.

In parallel with this evolution, software-controlled
virtual memory systems have been developed par-
ticularly to service multiple remote terminals. These
systems' sequentially. overlay in main memory data
from many users who cannot be aware of the instan-
taneous allocation of memory. The user programs as
though he has adequate addressable memory while
the software maintains the data on external storage
and calls it into memory in pages as required.

In order thus to transform physically external mem-
ory into logically internal memory, transfer and control
algorithms had to be developed for the software. These
were subsequently refined for internal memory hier-
archy control. \

In 1967 Gibson published® his definitive analysis of
performance considerations in two-level internal mem-
ory hierarchy. This work, which led toward develop-
ment, of the IBM 360/85, will be used extensively
below. }

Prior to that time there had been much debate on
how best to employ high-speed local storage. Intui-
tively, transparent mapping buffers seemed inefficient
as compared to explicit use by a knowledgeable pro-
grammer. It turned out that this view overlooked
inefficiences caused by programming overhead in direct
control and the fact that the hardware-implemented
control could perform more functions concurrently.

In order to prove efficiency of the transparent buf-
fer it was necessary both to develop adequate simu-
lation models for the system and to exercise these
models over an adequately large data base of repre-
sentative programs. The published results showed
that programs have substantial clustering of activity
(i.e., some information has relatively high value) so
that subsets of the data can be collected for processing.

DESIGN

This paper’s thesis is that an adequate theoretical
and statistical basis for the design of a memory hier-
archy appropriate to a given application now exists.
This basis will be developed below.

The hierarchy exists to enhanece the cost-effectiveness
of the system by integrating the characteristics of
dissimilar memories, trading access time and cost. In
order for this to be effective there must be a substantial
cost reduction accompanying substantially increased
access time. This implies that different levels in the
hierarchy must have a significant technical difference.
One cannot achieve a sufficiently high cost/performance
differential between a small and a large memory when
both employ ferrite cores. Thus it was the advent of
high-speed monolithic memory at the same time as the

On Memory System Design 35

development of hierarchy theory that made the hier-
archy profitable. .

Systems constructed to date have used at most one
level of transparent memory. Conceptually, it is natural
to extend the structure to additional levels. The dis-
cussion below is intended to apply to multiple-level
systems as defined by Figure 1. In these, the inner-
level buffer speed is closely matcehed to the processor’s
operating cycle.

Access time and cost remain the basic memory
parameters; they are intrinsic while all others are sub-
ject to system design. The additional parameters for
hierarchy design are block-size, buffer capacities, con-
trol algorithms and information transfer rates. Before
discussing these in detail, a brief review of the termi-
nology and operation of transparent hierarchy may be
helpful.

The objective is to gain processing speed by causing
most operational information to come from the fast
buffer. Because of the clustering of information, it is
probable that when data is used, it or neighboring data
will be subsequently used. The logic, therefore, de-
termines for each effective address the presence of
the data in the buffer. If it is not present, the address
requires an access from the main memory. The system
logic then moves a contiguous data set called a block
(containing the addressed data) from the outer (main)

LEVEL

|PROCESSORI o]

INNER |
(BUFFER)

DIRECTLY i i
ADDRESSED ! INTERMEDIATE |

| _(BUFFER) |

INTERNAL

(MAIN)

CHANNEL

EXTERNAL ’ |

Figure 1—Hierarchy of memory

NORMALIZED MISS PERCENTAGE

5 16
o -
z CAPACITY
I 2K BYTES

R 2 8K
~ 8 3 8K (FORTRAN)
g 4 16K
53 5 128 BLOCKS
w2 gl
S =
o2
zs
22 2r
33
ee

| -
5 :
P-4 (ABSOLUTE MISS PERCENTAGE)
& 1 1]] i] |

16 32 64 128 256 512 1024
BLOCK SIZE (BYTES)

Figure 2—Effect of block size upon buffer miss rates

memory to the inner (buffer) memory according to a
rule called the mapping algorithm. If the buffer is full,
the logic must first employ a replacement algorithm
to eliminate a block. The frequency of thus accessing
from outside the buffer, called the miss-rate, is the
prime determinant of the resulting performance.

Block size

The size of the block (group of bytes) to be handled
at the inner memory level is the first design choice.
Figure 2 shows the effect of varying the block size upon
the number of references not found in the buffer.s?
In order to suppress differences in magnitude caused
by other variables, the data is normalized to the mini-
mum miss rate for each study. For a fixed buffer ca-
pacity, the miss rate tends to first decrease as the
block size increases and then increase sharply after
the minimum is reached. The minimum occurs for
blocks in the range of 16 to 256 bytes. The increase
results from the block becoming so large that too few
are contained by the buffer. If the buffer capacity
increases to always contain the same number of blocks,
the miss rate continues to decrease.

More significant, therefore, is the traffic between the
buffer and the next level that results from the miss
rate. Since an entire block must be moved for each
reference not found in the buffer, this is the product of
miss rate and block size, as shown in Figure 3. This is
a function that always increases, and increases rapidly
as the block size goes above 64 bytes.

Thus, larger blocks imply the need for larger buffers
to maintain an adequate number of blocks, longer
total block transfer time, and greater backing store
bandwidth. Small blocks imply a larger expenditure
in hierarchy control because of their number.

36 Fall Joint Computer Conference, 1970

(4.2)

NORMALIZED TRAFFIC
(BYTES FROM BACKING STORE)

2 (1.9)

[(09) (10)
(ABSOLUTE TRAFFIC - BYTES / REFERENCE)
0 1 [} 1]

[32 64 128 256 512
BLOCK SIZE (BYTES)

Figure 3—Effect of block size upon information required from
backing store

Combining these data one selects an inner level
block size of 32, 64 or 128 bytes for machines having a
binary number of bytes per word. Results to data
indicate that a 64 byte block is optimum,

In extending the structure to additional levels, the
same considerations apply. Because an intermediate
buffer is larger than an inner level, one prefers to use
large blocks in it to minimize the cost of control. Since
the miss rate is lower, the block size can be larger for
the same traffic level. In addition, larger blocks tend
to compensate for the longer access times. The use of
pages of up to 4,096 bytes is common in time-sharing
systems for disk or drum transfer blocks. This is much
too large, however, for a three-level internal memory
hierarchy. By analysis like that above, the block size
for a third-level should be from one to eight second-
level blocks. Preliminary results indicate that a 4:1
ratio (256 bytes at the third level) is best. With disk
access times reduced by head-per-track designs and

effective request queuing, the reduction of the external
page size to 1024 bytes appears advantageous.

Capacity

Given a transfer block size, the next (and most im-
portant) design parameter is the buffer capacity. The
percentage of memory references not found in the buf-
fer is primarily determined by that capacity as shown
in Figure 4. The various plots represent specific pro-
gram traces; the limits include the effects of different
algorithms. For a given capacity, block size and al-
gorithm, there is a distribution of the references-not-
found over a set of programs as shown in Figure 5. As
the size of the buffer is increased, this distribution
shifts to a lower average miss rate, and also becomes
less program sensitive, i.e., sharper.

The choice of buffer capacity must be based upon
performance and cost/performance analysis as dis-
cussed below. Based upon miss-rate alone, one would
be unlikely to use a buffer of less than 8,192 bytes.

Since these data show that the buffer size does not

100
s

sl —— PROGRAM TRACES

—— DISTRIBUTION LIMITS

»
I

»
¥

<)
T

PERCENT OF REFERENCES NOT FOUND IN BUFFER
»n » o o 6
T I

»
|

BLOCK SIZE = 64 BYTES

| | I L

(o] 2 q 8 13 32 64 128
\ BUFFER CAPACITY (K BYTES) -

Figure 4—Effect of buffer capacity upon buffer miss rates

On Memory System Design 37

depend upon the total memory of a system, the advan-
tage of hierarchy increases as that capacity increases.
More powerful processors solve larger problems and
execute more small programs concurrently ; they require
larger memories. The relationship between compu-
tational speed and typical memory capacity is shown
in Figure 6 using the IBM 360 series as an example.
Thus, the more powerful the system, the more ef-
fectively it can employ a hierarchy. As noted by Conti,
in highest performance systems a hierarchy must be
used to achieve the performance. Otherwise, the physi-
cal size of the massive memories causes long cable
lengths and access time limiting system performance.

Conversely, in designing lesser systems, one even-
tually needs so little memory that system cost/per-

.9

64K BYTE
CAPACITY

PROBABILITY

I6K BYTE

NAARANA R I
O 2 4 6 8 10
PERCENT OF REFERENCES
NOT FOUND IN BUFFER

Figure 5—Distribution of references outside buffer over
many programs

16K~

o
(1]

256} ,
2 N

[-J
»
1

E

TR T 0 T R N T W W A R W I & A
2 44 ¢ .Lo 2 4 .'o 2 4 ¢ .'oo 2 : 1 :',oo

NORMALIZED SYSTEM PERFORMANCE

TYPICAL MEMORY CAPACITY (K BYTES)
@
T

Figure 6—Main memory requirements as a function of
Processor power

formance cannot be improved by a hierarchy. Clearly,
as the needed capacity approaches the buffer size, use
of two levels is uneconomical.

In extending the memory hierarchy structure to
multiple levels, the statistics of Figure 4 continue to
apply. They must be corrected for the block size used,
however. At each successive level the capacity must
increase as the access time increases. The number of
references not found in an intermediate level will be
approximately the same as if that level were itself the
inner level of memory in the system.

Algorithms

Each level in the hierarchy requires control al-
gorithms to map the larger memory onto the smaller
and to determine the area of the smaller that is to be
overlaid. Mapping algorithms are all derived from two
basic approaches.

The first is associative mapping in which a section
of buffer is linked to any section of backing store by
maintaining with the data the address of the backing-
store block currently residing in the buffer block. The
address storage for all blocks comprises a directory
memory, all of which must be interrogated in order
for any reference to be located. Unless relatively ex-
pensive high-speed parallel-search associative memory
contains the directory, considerable time must be spent
searching the memory. The associative function can
also be implemented as a random access array of a
size equal to the total number of blocks that can be
addressed, as in the experimental 7044X system de-
scribed by Brawn.!® This is an expensive method, how-
ever.

The second basic algorithm is congruence mapping,

38 Fall Joint Computer Conference, 1970

in which the binary address of the main store block
is direetly related to the corresponding buffer block
address, by truncation. It results in a loss of perfor-
mance due to swapping blocks between memory levels.
This occurs because congruence is a simple homo-
morphism between the many members in a subset of
all blocks in the backing store and a single block in
the buffer. Consequently, different program entities,
e.g., instructions and data, frequently conflict at a
buffer location and must be exchanged.

The most useful techniques combine associativity
and congruence. The 360/85, for example, associates
“sectors” of 16 blocks each in the buffer and backing
store. Blocks within the sector correspond uniquely,
by congruence. The ‘‘set associative” algorithm de-
seribed by Conti is a kind of inverse, in which the sets
in the backing store are congruent to sets in the buffer
but blocks within the sets are associatively linked.

When a data block not contained by a full buffer
is needed, an algorithm must determine the area of
the buffer that is to be overlaid. For a pure congruence
mapping algorithm, this replacement algorithm is
implicit. When any measure of associativity exists,
however, a choice must be made. The basic alternatives
include random selection and activity-weighting. A
simple form of the latter is replacement of the least
recently used block. Refining this approach to include
measuring total block usage as well as how recently
blocks were used assigns a higher value to information
such as a supervisory routine which, although not
recently used, has been executed many times in the
program. These algorithms attempt to measure the
value of each block and to displace the least valuable
at any instant.

An ideal replacement algorithm can be defined as
one that always replaces that block which will be used
most distantly in the future. The practical methods
discussed above are close to this ideal. Extreme sophis-
tication is not profitable; even the random displace-
ment method is not significantly inferior.

Semiconductor memory isimportant in 1mplement1ng
these controls as well as in creating the hierarchy.
Associative arrays effectively perform the address
mapping. A shift register set can implement least-
recently-used replacement, which corresponds to a
push-down list. Indeed, the entire paging control can
be designed as a shifting associative tag memory.

Particular consideration must be given to the storing
of processor-generated information into memory. Since
the master data exists only at the outer level, this level
must be updated. This can be done in parallel with
writing into the buffer from the processor. This tech-
nique (store-thru) is effective when the backing memory
is accessed by word, as in the 360/85, but can consume

excessive time in a block oriented backing memory.
Alternatively, a tag can be set for the buffered block
to indicate that it has been modified and to control
its transfer back to the master location when displaced.
This method can present a problem in a multi-processor
configuration or in the case of malfunction, in that the
master copy does not immediately show the true status
of the program. On the other hand, the unmodified
base data can be employed in a retry or recovery pro-
cedure.

Similar considerations apply in block fetching. Since
requested data is needed immediately, it is always
profitable to fetch information from its current level
into the inner level and simultaneously into processor
registers. The fetching sequence can be ordered so that
the word needed is the first member of the block to be
fetched. However, the block being replaced must first
be written into the higher level 1f it has been updated
and store-thru is not used.

If the same block size were used at all levels one
would never copy from higher levels into intermediate
levels; rather the intermediate levels would fill by
displacement from the inner level. This implies that
the effective capacity of an intermediate level would
be greater than its physical size. However, when larger

100 l
8- s
6=
ry =

512 BYTE
BLOCKS

256

128

64

» 20O
|

32

~N
T

//

INFORMATION FROM BUFFER

* @ =
1

»
I

RATIO OF INFORMATION FROM BACKING STORE TO

0l ¢ 1 | . l 1 1
8 16 64 128
BUFFER CAPACITY (K BYTES)

Figure 7—Information from backing store as a function of
buffer capacity

On Memory System Design 39

blocks are used at outer levels it is better to transfer
them into intermediate levels to avoid reaccessing the
outer level for a subsequent working block contained
within the specified transfer block.

Information transfer

Hierarchy reduces the amount of data required from
the slower memories. The designer must, however,
provide sufficient bandwidth at each level to insure
that the access time rather than the time to transfer a
block, determines performance. The average data
requirements from a backing store are shown in Figure
7 as a ratio to those from the buffer. These are a func-
tion of the miss rate and hence, of the buffer capacity.
The data rate from outer levels must also be adequate

for access bursts, interference from input/output and -

program startup.
The more demanding requirement is that a block
transfer be complete before a second block call is

00

84—

[} ==

‘r

2 b=

1o} -

8 =

‘I 32 BYTE

BLOCKS

24—

1.O}—

s—

6

BACKING STORE TRANSMISSION TIME (CYCLES /4 BYTE WORD)

2P
[o] g
8
B —«—=-BURST TRANSMISSION RATE
TO SUPPORT ONE DOUBLE
A WORD PER CYCLE PROCESS-
ING RATE
2p
| | | 1 |
Kel] ?

a 8 16 32 64_ |
BUFFER CAPACITY (K BYTES).

Figure 8 —Allowable backing store transmission times

50
'_
Z 40
3]
& I8 CYCLE
w ACCESS
o
- /
0 30t CALCULATED.” »*~ _
(%] 30 ,/
[e] ”
ot ~7~“MEASURED
rd
3] 2711 CYCLE
2 ACCESS
s
Z 201
o
B T
W
¥ 6 CYCLE ACCESS
S
Q 10
[72]
w
Q
o
[1'
a
o 1 | 1 i
(<) [2 3 4 5 6 7

8
REFERENCES NOT FOUND IN BUFFER (PERCENT)

Figure 9—Effect of buffer miss rate upon processor performance

statistically expected. The time between block calls
is a random variable, Poisson distributed, with a mean
that is proportional to the average miss rate for the
given buffer capacity, as shown in Figure 4. The al-
lowable transfer times (in buffer cycles) are shown in
Figure 8 as a function of buffer capacity and block size.

At each successive level, the basic information turn-
over rate as determined by the memory cycle is lower.
The designer can compensate for this either be in-
creasing the number of bits per memory cycle (word
length) or by activating a larger number of memory
units on each block reference (interleaving).

Performance

Rigorous performance prediction for a proposed
system can be accomplished only by exercising its
design over a representative program set by simula-
tion. Sufficient data has been published, however, to
permit reasonable estimates of performance to be made
from the given design parameters.

If one knows the average number of memory ref-
erences that fall outside the buffer, he can readily
compute the corresponding time penalty; given the
backing store access time. If the percentage of processor
cycles that can generate memory references is also
known, a complete estimate of processing time can be
made. The total time T = T (processing) + T (buf-
fer) + T (backing store). In making relative perfor-

PERFORMANCE LOSS (PERCENT)
- N ol » o]
o o o o o o

oO

40 Fall Joint Computer Conference, 1970

MISS RATE=5%

1
5 10 15 20 25 30

Figure 10—Effect of backing store cycle upon processor
performance

mance estimates, the entire expression can be handled
as a summation of the fractions of the total time spent
in each activity.

Figure 9 uses this technique to show system per-
formance in terms of degradation from what the sys-
tem would give if the buffer provided the total memory
capacity, as a function of the percentage of references
not found in the buffer. The data given by Liptay for
the 360/85 are shown for comparison. In the case of
main memory access time of eleven cycles, it was
assumed that for every one-hundred memory references
there were 42 processor-only cyecles. The mean-time
between calls to the backing store was taken as greater
than the block transfer time. These data can also show
the effect upon performance of varying the backing
store access time (expressed as a multiple of the pro-
cessor cycles) for various miss rates, as in Figure 10.

This approach is particularly useful in comparing
memory system alternatives. Using a reference system
it can be translated into absolute performance if
desired. However, it relates entirely to processor com-
putational power, not system throughput.

In predicting performance when another level is
added, we note that an intermediate level acts as a
backing store to an inner level and as a buffer to an
outer level. Based upon the number of references not
found in that level, a time premium due to accessing
the next level can be added. For a given configuration

BACKING STORE ACCESS TIME (CYCLES)

and set of access times, total running time can be
calculated as indicated above, using the data found in
Figure 4.

No experimental data has yet been published to
validate such estimates of multiple-level memory
hierarchy performance; no such systems are known to
have been constructed. Predictions based upon simu-
lation require accumulation of a data base of represen-
tative programs; in order to be convincing, these must
include system programs and others large enough to
use the available address space and to overflow inter-
mediate members of the hierarchy. Purely theoretical
methods of performance prediction have been incom-
plete because, as yet, no one has adequately char-
acterized the parameters of the program process.

Cost/performance

Unless marketing needs force a specific cost or per-
formance target, the designer’s objective is to minimize
the cost/performance ratio for the system within a
general area of performance. In the case of designing
the memory system he may have to compare sets of
one, two and three level designs. The basis for cost/
performance comparisons must be the performance
estimates discussed above. The costs must include all
of the memory, processor and control costs—not
merely raw memory cost—to arrive at a properly
balanced design.

For the two-level hierarchy, Figure 11 illustrates the

p~
Zs
s

2
34
x
> 3
< 3
d I
Q2 4
o
wl
NIL
-
<
s
o 63z T

A 128 256

< BUFFER CAPACITY (K BYTES)

Figure 11—Cost/performance analyses of two-level hierarchy
examples

On Memory System Design 41

analysis to be made. Using appropriate costs for the
system elements, we plot the relative delay-cost product
as a function of the buffer capacity. This is proper be-
cause the backing store capacity is fixed by the appli-
cation. The most effective system is that in which the
delay-cost product is least. Curve (1) of Figure 11 is
plotted for arbitrary assumptions including: buffer
cost = $.25 per bit, two million byte main memory
cost = $45,000 with access equal to 33 cycles, high~
performance processor cost = $900,000, processor cy-
cles = 32 percent. For these assumptions a buffer
capacity of 96K bytes is most effective. It is large be-
cause of the long main-memory access time.

In order to illustrate the effect of varying these
assumptions, the following curves are also shown:

2. first level buffer costs twice as high ($.50)

3. main memory access longer (50 cycles)

4. miss ratio improved (lowered) by a factor of
two for each capacity.

Some qualitative rules for optimizing memory
system cost/performance are apparent from these
analyses:

1. as buffer memory is relatively more expensive
less should be used;;

2. as main memory is relatively slower more buf-
fer should be used;

3. as algorithms yield a lower miss rate less buffer
should be used.

The converses also apply.

In order to assess the utility of a three-level hier-
archy one must first evaluate the two-level alternatives.
To find the most favorable three-level configuration
we must consider a range of capacities for each buffer
level. Figure 12 shows how cost-performance values
for the three-level alternatives can be displayed as a
function of first-level buffer capacity for comparison
with the two-level situation.

Conditions that are favorable to the use of a three-
level configuration include:

1. expensive first level technology

2. steep cost/performance curve for main memory
technology

3. relatively high miss ratios

4. large total memory requirements

An optimum three-level configuration will use less
first-level and more second-level buffer memory than
the equivalent two-level case. The two-level con-

P>
Zs
- TWO-
» L
9 EVEL
Sa
x
23
|
w
2
i
a ZSECOND LEVEL
N BUFFER CAPACITY
-
I
=
! 1 I | L

0

> 16 32 64 128 256

8
FIRST LEVEL BUFFER CAPACITY
(K BYTES)

Figure 12—Cost/performance analyses of three-level hierarchy
examples

figuration is more generally applicable, until a lower
cost bulk memory is available.

DISCUSSION

A properly designed memory hierarchy magnifies
the apparent performance/cost ratio of the memory
system. For example, the first case assumed in Figure
11 shows a cost/performance advantage of five times
that of a plausible single-level memory system with a
three-cycle access costing $.15 per bit. The combina-
tion achieves the capacity of the outer level at a per-
formance only slightly less than that of the inner level.
Because of the substantial difference in the capacities,
the total cost is not greatly more than that of the outer
level alone.

The early memory hierarchy designs attempted to
integrate the speed/cost characteristics of electronic
and electromechanical storage. Now the large per-
formance loss could be predicted from the relatively
enormous access time of the rotating device. For ex-
ample, degradation of more than 100 times over opera-
tion from entirely within two-microsecond memory
would occur with addresses generated every two micro-
seconds, 64K byte buffer (core) capacity, 512 word
block size, and Sms average drum access time. To com-
pensate for such disparity in access time, the inner
memory must contain nearly complete programs.

42 Fall Joint Computer Conference, 1970

JOSss
SCHERR

McGILL

CUMULATIVE PROBABILITY

| A W WO W N W WO M O N AN
(5} 40K 80K 120K 160K
PROGRAM SIZE (BYTES)

Figure 13—Distribution of program size

Successful time-sharing systems essentially do this.
Figure 13 shows the results of several studies'® 4.5 of
the distribution of their program size.

These time-sharing systems also indicate direction
toward the use of multiple level internal memory. In
particular, they show the need for low-cost medium-
access bulk memory. They are caught between in-
adequate response time achieved paging from drum or
disk and prohibitive cost in providing enough of present
large capacity core memories (LCM). However, de-
signers such as Freeman! and MacDougall? have
stated that only by investment in such LLCM can sys-
tems as powerful as the 360/75 have page accessibility
adequate to balance system cost/performance. Free-
man’s design associates the LCM with a backing disk,
as a pseudo-disk system.

Transparent hierarchy can make it easier to connect
systems into multiprocessing configurations, with
only the outer level common. This minimizes inter-
ference at the common memory, and delays due to
cable length and switching. It has no direct effect on
associated software problems.

To date, hierarchy has been used only in the main
(program) memory system. The concept is also power-
ful in control memories used for microprogram storage.
There it provides the advantages of writeable control

memory, while allowing the microprograms to reside in
inexpensive read-only or non-volatile read-write mem-
ory.

A primary business reason for using hierarchy is to
permit continued use of ferrite memories in large sys-
tems. With a buffer to improve system performance,
ferrites can be used in a lowest cost design. It is un-
necessary to develop ferrite or other magnetic mem-
ories at costly, high performance levels.

The use of multiple levels also removes the need to
develop memories with delicately balanced cost/per-
formance goals. Rather, independent efforts can aim
toward fast buffer memories and inexpensive large
capacity memories. This permits effective use of re-
sources and implies higher probability of success.

Systems research in the near future should concen-
trate upon better characterization of existing systems
and programs. There is still little published data that
describes systems in terms of their significant statistical
characteristics. This is particularly true with respect
to the patterns of information scanning that are now
buried under the channel operations required to ex-
change internal and external data. Only from analysis
and publication of program statistics and accompanying
machine performance data will we gain the insight
needed to improve system structure significantly.

REFERENCES

1 C J CONTI
Concepts for buffer storage
IEEE Computer Group News Vol 2 No 8 March 1969

2 CJCONTI D H GIBSON S H PITKOWSKY
Structural aspects of the system/360—Model 85, I.—Qeneral
organization
IBM Systems Journal 7 1 1968

3 J S LIPTAY
Structural aspects of the system 360 Model 85, II—The
cache
IBM Systems Journal 7 1 1968

4 T KILBURN
Electronic Digital Computing Machine
Patent 3,248,702

5 T KILBURN D B G EDWARDS M J LANIGAN
F H SUMMER
One-level storage system
IRE Transactions on Electronic Computers
Vol 11 No 2 1962 pp 223-235

6 D W ANDERSON F J SPARACIO
R M TOMASULO
The IBM System /360 Model 91: Machine philosophy and
instruction handling
IBM Journal Vol 11 No 8 1967

7 L. BLOOM M COHEN S PORTER
Considerations in the design of a computer with a high
logic-to-memory speed ratio
Proc of Sessions on Gigacycle Computlng Systems AIEE
Winter General Meeting January 1962

On Memory System Design 43

8 D H GIBSON
Considerations in bleck oriented systems design
AFIPS Proceedings Vol 30 SJCC 1967 pp 75-80
9 S S SISSON M J FLYNN
Addressing patterns and memory handling algorithms
AFTPS Proceedings Vol 33 FJCC 1968 pp 957-967
10 B S BRAWN F G GUSTAVSEN
Program behavior in a paging environment
AFTIPS Proceedings Vol 33 FJCC 1968 pp 1019-1032
11 D N FREEMAN
A storage hierarchy system for balch processing
AFIPS Proceedings Vol 32 SJCC 1968 p 229

12 M H MacDOUGALL
Simulation of an ECS-based operating system
AFIPS Proceedings Vol 30 SJCC 1967 p 735
13 A L. SCHERR
Time-sharing measurement
Datamation Vol 12 No 4 April 1966 pp 22-26
14 I F FREIBERGS
The dynamic behavior of programs)
AFIPS Proceedings Vol 33 FJCC 1968 pp 1163-1167
15 G E BRYANT
JOSS—A statistical summary
AFIPS Proceedings Vol 31 FICC 1967 pp 769-777

Design of a very large storage system*

by SAMUEL J. PENNY, ROBERT FINK, and MARGARET ALSTON-GARNJOST

Unaiversity of California
Berkeley, California

INTRODUCTION

The Mass Storage System (MSS) is a data-management
system for the on-line storage and retrieval of very large
amounts of permanent data. The MSS uses an IBM
1360 photo-digital storage system (called the chipstore)
with an on-line capacity of 3X10" bits as its data
storage and retrieval equipment. It also uses a CDC 854
disk pack for the storage of control tables and indices.
Both these devices are attached to a CDC 6600 digital
computer at the Lawrence Radiation Laboratory—
Berkeley.

Plans for the MSS began in 1963 with a search for an
alternative to magnetic tape as data storage for analyses
in the field of high energy physics. A contract was
signed with IBM in 1965 for the chipstore, and it was
delivered in March of 1968. The associated software on
the 6600 was designed, produced, and tested by LRL
personnel, and the Mass Storage System was made
available as a production facility in July of 1969.

This paper is concerned with the design effort that
was made in developing the Mass Storage System. The
important design decisions, and some of the reasons
behind those decisions, are discussed. Brief descriptions
of the hardware and software illustrate the final result
of this effort.

CHOICE OF THE HARDWARE -

By 1963 the analysis of nuclear particle interactions
had become a very large application on the digital
computers at LRL—Berkeley. More than half the
available time on the IBM 7094 computer was being
used for this analysis, and the effort was expanding.
Much of the problem was purely data manipulation—
sorting, merging, scanning, and indexing large tape

* Work done under auspices of the U.S. Atomic Energy Commis-
sion.

files—and single experiments produced tape libraries of
hundreds of reels each.

The problems of handling large tape libraries had
become well known to the experimenters. Tapes were
lost; they developed bad spots; the wrong tapes were
used; keeping track of what data were on what tape
became a major effort. All these problems degraded the
quality of the data and made the experiments more
expensive. A definite need existed for a new approach.

The study of the problem began with establishment
of a set of criteria for a large-capacity on-line storage
device, and members. of the LRL staff started investi-
gating commerically available equipment. The basic
criteria used were:

a. The storage device should be on-line to the
central computing facility.

b. It should have an on-line capacity of at least
2.5X 10" bits (equivalent to 2000 reels of tape).

c. Access time to data in the storage device should
be no more than a few seconds.

d. The data-reading transfer rate should be at least
as fast as magnetic tape.

e. The device should have
capability. '

f. The storage medium of the device should be of
archival quality, lasting 5 years at least.

g. The storage medium need not be rewritable.

h. The frequency of unrecoverable read errors
should be much lower than on magnetic tape.

i. Data should be easily movable between the
on-line storage device and shelf storage.

j- The device hardware should be reliable and not
subject to excessive failures and down time.

k. Finally, the storage device should be economi-
cally worthwhile and within our budget.

random-access

Several devices were proposed to the Laboratory by
various vendors. After careful study, including computer
simulation of the hardware and scientific evaluations of

46 Fall Joint Computer Conference, 1970

6600
Central Developer Unexposed
_ memory cocese tluids entry ~ film entry

System ggﬁo Disk pack
Job |

- r—=-1 Recorder

esooceu | i ,””
2
Jopi - |
= usini 6600

r___ussg [~ FeY Doto 'L ’

~ troller 1
Job 63 H 1 7

' |
! E File :
3x10"
| Control r___4__ bits
Keyboord] _
processor I
———=~— Control poth Manual entry
Dota path and exit for

ZZZ272z Pneumatic box path boxes

XBL707 -3312

Figure 1—General MSS architecture

the technologies, the decision was made to enter into a
contract with IBM for delivery, in fiscal year 1968, of
the 1360 photo-digital storage system. This contract was
signed in June of 1965. The major application con-
templated at that time is described in Ref. 1.

It was clear that one of the major problems in the
design of the associated software would be the storage
and maintenance of control tables and indices to the
data. Unless indexing was handled automatically by the
software, the storage system would quickly become
more of a problem than it was worth. Protection of the
indices was seen to be equally important, for the
system would be dependent on them to physically locate
the data. It was decided that a magnetic disk pack
drive, with its removable pack, was the most suitable
device for the storage of the MSS tables and indices.

A CDC 854 disk pack drive was purchased for this
purpose.

DESCRIPTION OF THE HARDWARE
1360 Photo-digital storage system

The IBM 1360 chipstore is an input-output device

composed of a storage file containing 2250 boxes of ~

silver halide film chips, a chip recorder-developer, and a
chip reader. Figure 1 shows the general arrangement of
the chipstore hardware and its relation to the CDC 6600
computer. References 2 through 5 describe the ha.rdware
in detail. A brief summary is given below.

‘A chip is 35 by 70 mm in size and holds 4.7 million bits
of data as well as addressing and error-correction or
error-detection codes. Data from the 6600 computer are
recorded on the chip in a vacuum with an electron beam,
taking about 18 sec per chip. The automatic film

developer unit completes the processing of a chip within
2.5 min; it overlaps the developing of eight chips so that
its processing rate is comparable to that of the recorder.

Up to 32 chips are stored together in a plastic box.
Figure 2 shows a recorded film chip and the box in
which it is kept. These boxes are transported between
the recorder-developer, the box storage file, and the chip
reader station by means of an air blower system.
Transport times between modules on the Berkeley
system average around 3 sec.

Under the command of the 6600 computer the
chipstore transports a box from the storage file to the
reader, picks out a chip, and positions it for reading.
The chip is read with a spot of light generated by a
cathode-ray tube and detected by a photomultiplier
tube at an effective data rate of 2 million bits per
second. The error correction-detection codes are checked
for validity as the data are read, and if the data are
incorrect, an extensive reread and error-correction
scheme is used to try to reproduce the correct data. The
data are then sent to the 6600 across a high-speed data
channel. Chip pick and store times are less than 0.5 sec.

The box storage file on the Berkeley 1360 system has
a capacity of 2250 boxes. This represents an on-line data
capacity of 2750 full reels of magnetic tape (at 800
BPI); 1360 systems at other sites have additional file
modules, giving them an on-line capacity three or more
times as great as at Berkeley.

A manual entry station on the chipstore allows boxes
of chips to be taken out of the system or to be reinserted.
By keeping the currently unused data in off-line storage
and retaining only the active data in the file, the
potential size of the data base that ean be built in the
MSS is equivalent to tens of thousands of magnetic
tapes.

Figure 2—Recorded film chips and storage box

Design of Very Large Storage System 47

A process control computer is built into the chipstore
hardware. This small computer is responsible for
controlling all hardware actions as well as diagnosing
malfunctions. It also does the detailed scheduling of
events on the device. Communication between the
chipstore and the host computer goes through this
processor. This relieves the host of the responsibility of
commanding the hardware in detail, and offers a great
deal of flexibility.

854 Disk pack drive

The CDC 854 disk pack drive holds a removable
10-surface disk pack. The pack has a typical access time
of 90 msee, and a data transfer rate of about 1 million
bits per sec. Its storage capacity is 48 million bits.

MSS uses this pack for the storage of all its tables and
indices to the data that have been written into the 1360
chipstore. A disk pack was chosen for this function to
insure the integrity of the MSS tables. The 854 has a
proven record of hardware and data reliability. Also,
since the pack is removable, the drive can be repaired
and serviced without threat to the tables.

6600 Computer complex

The chipstore is connected to one of the CDC 6600
computers at LRL through a high-speed data channel.
The 6600 computer has 131072 words of 60-bit central
core memory (CM), a central processor unit (CPU)
operating at a 100-nsec cycle rate, and 10 peripheral
processor units (PPU). Each PPU contains 4096 words
of 12-bit core memory and operates at a 1-usec cycle
rate. The PPUs control the data channel connections to
the external input-output equipment and act as the
interface between jobs residing in CM and the external
world.

The operating system on the 6600 is multiprogrammed
to allow several jobs to reside in CM at once and share
the use of the CPU. Two of the PPUs act as the system
monitor and operator interface for the system, and those
remaining are available to process task requests from
the monitor and execute jobs. The MSS, composed of
both CPU and PPU programs, has been built as a
subsystem to this operating system.

CHOICE OF THE MASS STORAGE SYSTEM
SOFTWARE

Design objectives

Having made the commitment on hardware, the
Laboratory was faced with designing and implementing

the associated software. The basic problem was to
produce a software system on the CDC 6600 computer
that, using the IBM 1360 chipstore, would lead to the
greatest increase in the productive capacity of scientists
at the Laboratory. In addition, it was necessary that the
system be one that the scientists would accept and use,
and to which they would be willing to entrust their data.
It would be required to be of modular design and
“open-ended,” allowing expansion and adjustment to
new techniques that the scientists might develop for
their data analysis. ‘

Overall study of the problem yielded three primary
objectives. Most important was to increase the reli-
ability of the data storage, both by reducing the number
of data-read errors and by protecting the data from
being lost or destroyed; much time and effort could be
saved if this objective were met. The second objective
was to increase the utilization of the whole computer
complex. The third was to provide facilities for new,
more efficient approaches to data analysis in the future.

The problem was divided into three technical design
areas: the interaction between the software and the
hardware, the interaction between the user and the
software, and the structure of the stored data.

In the area of software-hardware interaction, the
design objectives were to maximize protection of the
user data, interleave the actions for several jobs on the
hardware, reduce the need for operator intervention, and
realize maximum utilization of the hardware. This was
the approximate order of importance.

Objectives in the area of user interaction with the
MSS included making that interaction easy for the user,
offering him a flexible data-read capability, and supply-
ing him with a protected environment for his data. Ease
of data manipulation was of high value, but not at the
expense of data protection. A flexible read mechanism
was necessary, since if the users could not read their data
from the MSS, they would seek other devices. This
flexibility was to include reading data from the chipstore
at rates up to its hardware limit, having random access
to the data under user control, possibly intermixing data
from the chipstore, magnetic tapes, and system disk
files, and being able to read volumes of data ranging in
size from a single word to the equivalent of many reels
of tape. .

The problem of data structures for the MSS was
primarily one of finding a framework into which existing
data could be formatted and which met the require-
ments of system and user interaction. This included the
ability to handle variable-length data records and files
and to access these data in a random fashion. It was
decided that a provision to let the user reference his data
by name and to let the system dynamically allocate
storage space was very important. It was also important

48 Fall Joint Computer Conference, 1970

to have flexible on-line-off-line data-transfer facility so
that inactive data could be moved out of the way.

Software design decisions

Several important design decisions were made that
have had a strong effect on the nature of the final
system. Some of these decisions are listed here.

Each box used for data storage is given a unique
identification number, and this number appears on a
label attached to the box. A film chip containing data is
given a unique home address, consisting of the identifi-
cation number of the box in which it is to reside and the
slot in that box where it is to be kept. Control words
written at the beginning of the chip and at various places
throughout the data contain this address (along with
the location of the control word on the chip), and this
information can be checked by the system to guarantee
correct positioning for retrieval of the data. It is also
used to aid in recovery procedures for identifying boxes
and chips. This control information can be used to help
reconstruct the MSS tables if they are destroyed.

The control words are written in context with the data
to define the record and file structure of the data on the
chips. The user is allowed to give the address of any
control word (such as the one at the beginning of a
record) to specify what data are to be read. This scheme
meets the design objective of allowing random access to
data in the chipstore.

Data to be written into the chipstore are effectively
staged. The user must have prepared the data he wishes
to be recorded in the record and file structure he desires
in some prior operation. He then initiates the execution
of a system function that puts the source data into chip
format, causes its recording on film chips, waits for the
chips to be developed, does a read check of the data, and
then updates the MSS tables.

Data read from the chipstore are normally sent
directly to the user’s program, though system utility
functions are provided for copying data from the
chipstore to tape or disk. If the user desires, he may
include a system read subroutine with his object
program that will take data directly from the chipstore
and supply them to his executing program. This method
was chosen to meet the objectives of high data-transfer
rates and to provide the ability to read gigantic files
of data.

To aid the user in the access and management of his
data in the MSS, it was decided to create a data-
management control language oriented to applications
on the chipstore. A user can label his data with names
of his own choosing and reference the data by those
names. A two-level hierarchy of identification is used,

that of data set and subset. The data set is a collection
of named subsets, in which each subset is some structure
of user data. The control language is not limited to
manipulating only data from the chipstore; it can also
be used to work with magnetic tape or system disk files.

Two more decisions have greatly simplified the
overall problem of data management in the MSS. The
first was to allocate most of the on-line storage space on
the chipstore in blocks to the scientists engaged in data
analysis' of current experiments, and give them the
responsibility of choosing which of their data are to
reside on-line within their block and which are to be
moved off-line. The second decision was to treat all as
permanent. Once successfully written, film chips are
never physically destroyed. At most, the user may
delete his reference to the data, and the chips are
moved off-line.

DESCRIPTION OF THE MSS SOFTWARE

The system in use on the 6600 computer for utilizing
the chipstore results both from design effort at the
beginning of the project and from experience gained
during the implementation and initial production
phases. Its essential features are listed below.

Indexing and control of the data stored in the
chipstore are handled through five tables kept on the
disk pack, as follows.

The box group allocation table controls the allocation
of on-line storage space to the various scientists or
experiments at the Laboratory. Any attempt by a user
to expand the amount of on-line space in use by his box
group above its allowable limit will cause his job to be
aborted.

The box identification table contains an entry for each
uniquely numbered box containing user data chips. An
entry tells which box group owns the box, where that
box is stored (on-line or off-line), which chip slots are
used in the box, and the date of its last use.

The file position table describes the current contents
of the 1360 file module, defines the use of each pocket in
the file, and gives the identification number of the box
stored in it. ‘

The data set table contains an entry for each of the
named collections of data stored in the chipstore. Status
and accounting information is kept with each data-set
table entry. Each active entry also points to the list of
subsets collected under that data set.

The subset list table contains the lists of named subsets
belonging to the entries in the data set table. A subset
entry in a list gives the name of the subset, the address
of the data making up that subset, and status informa-
tion about the subset.

Design of Very Large Storage System 49

These tables are accessed through a special PPU task
processor program called DPR. This processor reads or
writes the entries in the tables as directed. However,
if the tables are to be written, special checks and
procedures are used to aid in their protection. Twice
daily the entire contents of the MSS disk pack are
copied onto magnetic tape. This is backup in case the
data on the pack are lost.

All communication to the chipstore across the data
channel link is handled through another PPU task
processor program called 1CS; 1CS is multiprogrammed
so that it can be servicing more than one job at a time.
Part of its responsibility is to schedule the requests of
the various user jobs to make most effective use of the
system. For instance, jobs requiring a small amount
of data are allowed to interrupt long read jobs. Algo-
rithms for overlapping box moving, chip reading, and
chip writing are also used to make more effective use
of the hardware.

1CS and DPR act as task processors for jobs residing
in the central memory of the 6600. The jobs use the
MSSREAD subroutine (to read from the chipstore) or
the COPYMSS system utility to interface to these task
processors. These central memory codes are described
below.

The reading of data from the chipstore to a job in
central memory is handled by a system subroutine
called MSSREAD. The addresses of the data to be read
and how the data are to be transmitted are given to
MSSREAD in a data-definition file. This file is prepared
prior to the use of MSSREAD by the COPYMSS
program described later. MSSREAD handles the
reading of data from magnetic tape, from disk files, or
from the chipstore. If the data address is the name of a
tape or disk file, MSSREAD requests a PPU to perform

- the input of the data from the device a record at a time.
If the address is for data recorded in the chipstore, it
connects to 1CS, and working with that PPU code, takes
data from the chipstore, decodes the in-context struc-
ture, and supplies the data to the calling program.

A system program called COPYMSS is responsible
for supplying the user with four of the more common
functions in MSS. It processes the MSS data-manage-

TABLE I—Distribution of MSS Implementation Effort.

Operation Man-years
Procurement and Evaluation 1.0
System design 2.8
Software coding 1.7
Software checkout 0.8
Maintenance, documentation, ete. 1.2

TABLE II—MSS Usage Per Week.

Number of read jobs 250
Number of write jobs 100
Chips read 11500
Bits read 5.4X101
Unrecoverable read errors 15
Chips written 1900
Percentage down time 8.5

ment control language to construct the data-definition
file for MSSREAD. It performs simple operations of
copying data from the chipstore to tape or disk files. It
prepares reports for a user, listing the status of his data
sets and subsets. Finally, COPYMSS is the program
that writes the data onto film chips in the chipstore.

To write data to the chipstore, the user must prepare
his data in the record and file structure he desires. He
then uses the MSS control language to tell COPYMSS
what the data set and subset names of the data are to be
and where the data can be found. COPYMSS inserts the
required control words as the data are sent through 1CS
to the chipstore to be recorded on film chips. After the
chips have been developed, 1CS rereads the data to
verify that each chip is good. If a chip is not recorded
properly, it is discarded and the same data are written
onto a new chip. When all data have been successfully
recorded and the chips are stored in the home positions,
COPYMSS uses DPR to update the disk pack tables,
noting the existence of the new data set—subset.

The remaining parts of the MSS software include
accounting procedures, recovery programs, and pro-
grams to control the transfer of data between on-line
and off-line storage. These programs, used by the
computer operations group, are not available to the
general user.

RESULTS AND CONCLUSIONS
Effort

A total of about 7.5 man-years of work was invested
in the Mass Storage System at LRL—Berkeley. The
staff on the project was composed of the authors with
some help from other programmers in the Mathematics
and Computing Department. The breakdown of this
effort is shown in Table I.

Operating experience

The Mass Storage System has been in production
status since June 1969. Initial reaction of most of the

50 Fall Joint Computer Conference, 1970

TABLE ‘III—Comparison of Storage Devices at LRL—Berkeley

CDC 607 CDC 854 IBM 2311 CDC 6603

MSS tape drive disk pack data cell system disk
On-line capacity (bits/device) 3.3Xx101 1.2X108 4.8X107 3.0X10? 4.5X108
Equivalent reels of tape 2750 1. 0.4 25 3.75
Cost of removable unit $13/box $20/reel $500/pack $500/cell S —
Storage medium cost (¢/103 bits) 0.008 0.017 1.0 0.17 —
Average random access (sec) 3 (minutes) 0.075 0.6 0.125
Maximum transfer rate (kilobits/sec) 2000 720) 1330 450) 3750
Effective transfer rate» 1100 500 — 200 400
Approximate capital costs (thousands 1000. 100 35 220 220

of dollars) '

Mean error-free burst length (bits) 1.6X10° 2.5X107 >1010 10° >10%

= Based on usage at LRL—Berkeley; the rates given include device-positioning time.

users was guarded, and many potential users were slow
in converting to its use. As a result, usage was only about
2 hours a day for the first 3 months. Soon after, this level
started to increase, and at the end of one year of
production usage a typical week (in the month of June
1970) showed the usage given in Table II.

Most of the reading from the chipstore is of a serial
nature, though the use of the random-access capability
is increasing. Proportionally more random access
activity is expected in the future as users become more
aware-of its possibilities.

A comparison of the MSS with other data-storage
systems at the Laboratory, shown in Table ITI, points
out the reasons for the increased usage. For large
volumes of data, the closest competitor is magnetic tape
(assumed here to be full 2400-foot reels, seven-track,
recorded at 800 BPI).

The values shown in Table III are based on the
following assumptions: on-line capacities are based on
having a single unit (e.g., a single tape drive); capital
costs are not included in the storage medium costs;
effective transfer rates are based on usage at LRL, and
are very low for the system disk because all jobs are
competing for its use; and all costs given are only
approximate.

The average - data-transfer rate on long read jobs
(involving many chips and many boxes) is more than
one million bits per second. This is decidedly better than
magnetic tape. Short reads go much faster than from
tape once the 3-sec access time is complete.

The biggest selling point for the Mass Storage
System has been the extremely low data-error rate on
reads. This rate is less than 1/60 of the error rate on
magnetic tape. The second most important point has
been the potential size of the data files stored in the
chipstore. Several data bases of from 20 to 200 boxes

of data have been constructed. Users find that having
all their data on-line to the computer and not having to
rely on the operators to hang tapes is a great advantage.
Their jobs run faster and there is less chance that they
will not run correctly.

The cost of storing data on the chipstore has proven
to be competitive with magnetic tape, especially for
short files or for files that will be read a number of times.
Users are beginning to find it profitable to store their
high-use temporary files on the chipstore.

The system has not been without its difficulties.
Hardware reliability has at times been an agonizing
problem, but as usage increases and the engineers gain
more experience on the hardware, the down time for the
system has decreased significantly. We now feel that
5 percent down time would be acceptable, though less
would be preferable. Fortunately, lack of hardware
reliability has not affected the data reliability.

CONCLUSIONS

Though intended primarily as a replacement for
magnetic tape in certain applications, the MSS has
shown other benefits and capabilities. Data reliability is
many times better than for magnetic tape. Some
applications requiring error-free storage of large
amounts of data simply are not practical with magnetie
tape, but they become practical on the chipstore. The
nominal read rate is faster than that of magnetic tape
for long serial files. In addition, any portion of a file is
randomly accessible in a time ranging from a few
milliseconds to 5 seconds.

The MSS is not without its limitations and problems.
The 1360 is a limited-production device: only five have
been built. It uses technologies within the state of the
art but not thoroughly tested by long experience.

Design of Very Large Storage System 51

Keeping the system down time below reasonable limits
is a continuing and exacting effort. Development of both
hardware and software has been expensive. The software
was a problem because the chipstore was a new device
and people had no experience with such large storage
systems.

The Mass Storage System has met its purpose of
increasing the productive capacity of scientists at the
Laboratory. It has also brought with it a new set of
problems, as well as a new set of possibilities. The
biggest problem is how to live with a system of such
large capacity, for as more and more data are entrusted
to the chipstore, the potential loss in case of total failure
increases rapidly. The MSS offers its users important
facilities not previously available to them. More
important, the age of the very large Mass Store has
been entered. In the future, the MSS will become an
important tool in the computing industry.

REFERENCES

1 M H ALSTON S J PENNY
The use of a large photodigital mass store for bubble chamber
analysis
IEEE Trans Nucl Sci Volume NS-12 4 pp 160-163 1965
2 J D KUEHLER H R KERBY
A photo-digital mass storage system
AFIPS Conference Proceedings of the Fall Joint Computer
Conference Volume 29 pp 735-742 1966
3L BOLDHAM R T CHIEN D T TANG
Error detection and correction in a photo-digital storage
system
IBM J Res Develop Volume 12 6 pp 422-430 1968
4 D P GUSTLIN D D PRENTICE
Dynamic recovery techniques guarantee system reliability
AFIPS Conference Proceedings of the Fall Joint Computer
Conference Part IT Volume 33 pp 1389-1397 1968
5 R M FURMAN
IBM 1360 photo-digital storage system
IBM Technical Report TR 02.427 May 15 1968

Design of a megabit semiconductor

memory system

by D. LUND, C. A. ALLEN, S. R. ANDERSEN and G. K. TU

Cogar Corporation
Wappingers Falls, New York

INTRODUCTION

This paper describes a 32,768 word by 36 bit word
Read/Write Memory System with an access time of
250ns, and a cycle time of 400ns.

The memory system is based on MOS technology for
the storage array and bipolar technology for the
interface electronics. A functionally designed storage
array chip with internal decoding minimizes the number
of external connections, thereby maximizing overall
system reliability. The average power dissipation of the
overall system is maintained at about 0.4mw per bit
including all support circuitry dissipation. This is based
on a card configuration of 102 modules with a maximum
module dissipation of 600mw.

System status

At present test sites containing individual storage
array chip circuits and single bit cross sections have
been processed and are being evaluated. Although
initial test results are favorable sufficient data has not
been accumulated to verify all design criteria. Source-
drain storage array chip production masks are in line

with other levels nearing completion. Layouts of the

bipolar support chips are complete and ready for
generation of production masks.

System description

An isometric view of the complete 32,384 word by 36
bit memory system is shown in Figure 1. The total
volume occupied by the system is 0.6 cu. ft., resulting in
a packing density of approximately 2 million bits/cu. ft.
A mechanical housing is provided for the eight multi-
layer printed circuit cards that contain the memory
storage elements and peripheral circuits. To facilitate

53

insertion and extraction of cards a mechanical assembly
is also included. The card connectors are miounted on a
printed ecircuit interconnection board. All necessary
system wiring is done on the outside surfaces of this

ALL DIMENSIONS
ARE IN INCHES

INTER-CONNECTION
BOARD

COVER REMOVABLE
FOR CARD
INSERTION

ER
NNECTIONS

SIGNAL I/0
CONNECTOR

MEMORY SYSTEM ASSEMBLY
(8 CARD)

Figure 1-——Memory system assembly

54 Fall Joint Computer Conference, 1970

board with voltage distribution accomplished by the
internal planes. Additional edge connectors are mounted
in this board to accommodate I/O signal cabling via
plug-in paddle cards. Power connections are provided
at the outermost edge of the board.

Since the purpose of this design was to provide a
large, fast, low-cost system for use as a computer main
frame memory the following design constraints were
observed:

Capacity

A one megabit capacity was chosen to be representa-
tive of the size of memory that is applicable to a fairly
large, high-speed processor. It was decided that the
system should be built from modular elements so that
memory size and organization could be easily varied.
An additional advantage of ease of servicing and
stocking accrued from this approach.

Speed

A Dbalance between manufacturability and system
requirements was established in setting the performance
objectives. This tradeoff resulted in a goal of 250ns.
access time and 400ns cycle time.

Density

The density of memory cells should be maximized in
order to create minimum cost per cell. An objective of
1024 bits of information was chosen as a reasonable goal
using present LSI technology on a .125 in. X .125 in.
chip. In order to keep the I/O signal count within
reasonable bounds it was decided that address comple-
menting and decoding should be included within the
chip. The chip was structured 1024 words by one bit.

Memory card

A drawing of the basic modular unit, the memory
card, is shown in Figure 2. The card is a multilayer
printed circuit unit with two external planes for signal
wiring and two internal planes for distribution of the
three required voltages and ground. Ninety-eight
double sided connecting tabs are situated along one
edge of the card on a .150 in. pitch. These tabs provide
for a mating connection with the edge connectors
mounted on the interconnection board, and serve to
electrically connect all supply voltages and signal wiring

8.80 IN. . 38 IN.
I‘“_‘h"**'_zTas—cu*“*“—‘“’ﬂ ‘sscu'l
-U..,....‘\“I‘
AJAJA|AJAJAJA]A]A]P]P —c Tvp
AjJAJAlAJA]JAJALA]A]P]P (39)
AlAJA|AJATAJATALALPP| MEMORY
] CARD
AfATA|AJAJAJAALALP]P I:
gAAAAAAAAAPPB
¢ ||AJAJAJAJAjAJA]A]JA]P]P|B
o
zAAAAAAAAAPPi‘//—a(:}P
AlajJalajafalalala]e]e ooy v
4 \[S/Lfs/L]s/]ssysssn]snsn]sn] B B 3
© 3
‘ oo eryooonee
CONNECTOR—y 100 TYP 30,
H ,—Boaro

I

Figure 2—Memory card

to the card. The modules mounted on the card contain
one or two chips each, solder reflow bonded to a wiring
pattern on a ceramic substrate. Each module occupies a
0.7 in. square area. The 72 modules marked “A” contain
the storage array with two chips of 1024 bits each
included in each module. The “B’’ modules provide the
primary stages of bipolar buffering while the “P”’
modules contain the secondary bipolar buffering and
decoding. Modules “CL” and “DEL” provide for timing
generation while the remaining “S/L” modules perform
the sense amplification and latching functions.

Logic design

Memory system logic design was based on the
modular card concept to provide easy upward and
downward variation of total memory capacity. This
card contains all necessary input buffering circuitry,
timing circuits, storage elements, sensing circuits, and
output registers. The card is structured so that smaller
organizations can be obtained by depopulating modules.
TTL compatible open collector outputs are provided to
allow “wired-or”’ expansion in multiple card systems
such as the 32K word by 36 bit system discussed here.
Unit TTL compatible input loads help alleviate the
problems of driving a multiple card system.

Card logic flow

A signal flow logic diagram for the 8192 word by 18
bit memory card is shown in Figure 3. Thirteen single
rail address lines are required to uniquely determine one

Design of Mega-Bit Semiconductor Memory System 55
. - - - - i e - - 72 ARRAY
f TIMING - DELAY DELAY 2 e
uoout.s(lx)| MODULE (1X) l MODULE(IX)-[) i SENSE /LATCH MODULE (9%) ‘7==,::£.‘.
| I Tl 1 N 3 DELA
- cLock B o1 02 B L_ m H ! o | TERM. AS ,anqru/o
s I | l—'l] fogmuu i or [_33:1._" 'rsnu__l
2x — BT |(9) 2x
____l () DRIVE SENSE
TA OUT
Feaind, —1 o b=t o S — pmney;
ENABLE ! +2ERO,- ONE —‘ BIT +ZERO, - ONE
DRIVE|
()
i
2x
6)4) +A
—
1
- READ/+WRITE
r - —_— | = |
RESTORE :
9 :] |
— . 1
8 B8 B
! WORD
- (8) (9) ! b T‘ IDECODE| .. _ARRAY
L4 +A 8 o AND 32 X 32
o (8) e |] DRIVE
ADDRESS | 6117 +a 8 B
INPUTS ﬁ | L o) ! |5
5] o b2 . e
! e | L
41T +ap® 8 ks
s [Hepe | H e el py |
(8) : e)] ‘ 7
2i71+a - B 0 L’ -]] S0 OUT
| 1 @ l 19 ! "
l hia 12 ° ARRAY !
0 | eapt® (s b2 MODULE |
2 O o CN LS o1, weredi— wooue ae | 7 | (aftase
EEQ{ 2 |g CoweR 12| +A B UPPER I/2 DRIVER MODULE (1€X) ~ — — MODULE)
585 § 6no '—iﬂn il ()] (9) "~ SET DECODE - —
gg" 13 v e T 18 rower vz
3 — | RESET
SET .._—| B (:7)) . [pue i SETH
- - 4.8 ETC.
Il g — o { GRATSRN 148 6t
+ SELECT «——— B :
5 BUFFER MODULE (4X) COST PERFORMANCE MEMORY CARD LOGIC
|__ - - -] (8192 WORDS BY I8 BITS)}

(WITH M) AND M2 INPUTS GROUNDED AS SHOWN)

Figure 3—Cost performance memory card logic

of 8192 words. Four control lines are required as
follows:

Select—causes selection of entire card.

Read/Write—determine the mode of operation to
be performed.

Set—provides timing for the output data register.

Clock—generates timing for read and write opera-
tions as well as timing for cyclic data refreshing.

Thirty-six more lines are used for data-in and
data-out.

Read operation signal flow

Allinput lines are buffered immediately upon entering
the memory card. A second stage of address buffering is
included on the card to allow fan out to all 144 storage

array chips. Ten address lines (0-9) drive all storage
array chips on the card in parallel, decoding to one of
the 1024 bits stored on each chip. The remaining address
lines (10-12) are decoded and combined with the timed
Select pulse to create two Row Select signals which
energize two of the sixteen rows of array chips on the
card (two rows of chips per row of modules). Since there
are nine array chips in each row, a total of eighteen bits
are read out in each operation. The eighteen bits are
transmitted to eighteen combination differential sense
amplifier and latch circuits which are, in turn, wired to
the card connector interface.

Write operation signal flow

_ Cell selection is performed in the same fashion during
a write cycle as in a read cycle. However, instead of

56 Fall Joint Computer Conference, 1970

sensing the differential pairs associated with each bit
position as in a read operation, the lines are pulsed by
one of a pair of bit driver circuits. The magnitude of this
excursion is sufficient to force the selected cell to the
desired state as indicated by the condition of the
data-in line.

Storage array chip logic organization

The storage array chip is organized in a 32 by 32
matrix of storage cells. Five input address lines are
complemented upon entering the chip and then
selectively wired to the word deeoder drivers to provide
a one-of-32 selection. These word drivers are also gated
by Row Seleet so that only storage cells on a selected
chip are energized. The remaining one-of-32 decoding
function is performed on the cell outputs using the
remaining five input address lines. The 32 outputs of
this final gating stage are wire-ored together to the
single differential pair of output bit lines.

Timing structure

Because the array chip is operated in a dynamic
fashion, it is necessary to provide several timed lines
for periodic refreshing of data and for restoration of the
array chip selection circuits after a read or write
operation. To minimize the number of lines required at
the system interface, the timing generation circuits and
delay lines are included on each memory card. These
functions are implemented with nonsaturating current
switch cireuits for minimum skew between timed pulses.
Tapped delay lines are used to chop and delay the input
clock pulse. A total of four timing pulses are generated
as described below:

Row Select: This line is used to turn on the array
chip word and bit selection circuits during a read or
write operation.

Refresh: This line is timed to follow the Row Select
line and energlzes all word selectlon circuits to refresh
the array data.

Enable: The address inverters on the array chip are
enabled by this line during a normal read or write
operation. During the refresh portion of the cycle the
absence of this pulse disables the address inverters so
that all word selection circuits are simultaneously
energized. This permits refreshmg of data in all storage
cells.

Restore: This line gates on load devwes in all array
chip selection circuits during the refresh portion of the
cycle. These devices provide a recharging path for all

TIME (ns)

0 160 400

i A |
ADDRESS _[L [
ENABLE I 1 [

SELECT REFRESH

SELECT /
REFRESH —-—f —
RESTORE |]

Figure 4—Storage array chip input timing

the selection circuit node capacitances that were
discharged during the immediately preceding operation,
and for the node capacitances of the storage cells
themselves.

A diagram showing the relative timings of array chip
input lines is shown in Figure 4.

A timing chart for the memory system interface is
shown in Figure 5. It can be seen that two timed lines
are required at this interface. The first is the Clock line
from which all the aforementioned timings are derived.
The second is the Set line which latches array data into
the output register.

System operation

A block diagram for the complete 32K word by 36 bit
memory system is shown in Figure 6. Eight memory

Te 100 200 300 To 00 600 700 Te
cLock b 2 a
SELECT
ADDRESS
MODIFY
READ / NRITE
WRITE. - HERE
SET A
DATA oUT m

=] — ACCESS TIME = 250 ns
DATA IN 777]

READ —j

WRITE ————t~

THMING DIAGRAM FOR COST PERFORMANCE
READ-WRITE MEMORY SYSTEMS

Figure 5—Timing diagram for cost performance read-write
memory systems

Design of Mega-Bit Semiconductor Memory System 57

| 8192 WORD
ol 18817 PR
\RBW A
SELECT 0 Zz; MEMORY CARD [N
ATA IN DATA OUT
e S B S e\ 1% N (1~ 18)
8192 WORD
a3 18 BT ﬁ
READ / WRITE —H LH MEMORY CARD | N
/] N
g
SELECT 2 auszsrono N
A 18 BIT A
N [MEMORY caro
SELECT |] s
8192 WoRrD. | N
“ N
BN g BT
(7| MEMORY CARD
ADDRESS -
{13 LINES) R
4 8192 WORD
BY
I8 BIT
F 77| MEMORY CARD
DATA IN DATA OUT
(19 - 36) B L, (19 - 36)
8192 WORD
\i 8y
v 18 BIT
N | MemorY caro
CLOCK
N
8192 WORD §
vann BY S\
s;EL 18 BIT N
SELECT 3 ﬂ“z MEMORY CARD | N
L
” alszm\rwono
Y 18 BIT P
MEMORY CARD

Figure 6—Memory system block diagram

cards, each containing 8192 words by eighteen bits are
interconnected as shown to form the total system. All
cards are addressed in parallel with four mutually
exclusive Select lines energizing one pair of memory
cards each cycle. Each card output is “wire-ored” with
three other card outputs to expand word depth from
8192 words to 32,768 words. '

Maximum access time is 250ns as measured from the
+1.6 volt level of the input Clock leading edge transi-
tion. Minimum allowable cycle time is 400ns. and is
measured in a similar manner from one leading edge
Clock transition to the next. Since the Clock line
provides refreshing of data, it is also necessary that a
maximum Clock repetition time of 1.2us be maintained
to avoid loss of information.

Circuit design

- In the design of LSI memories the most important
costs to be minimized are as follows:

Unmounted chip cost per bit
Chip carrier cost per bit
Printed circuit card cost per bit
Support costs per bit

The chip cost per bit is largely a function of the area
of processed silicon required per bit of storage, the
process complexity as measured by the number of
masking or diffusion steps, and the chip yield. All of
these factors strongly favor a MOS-FET chip process
over bipolar process. For a given chip size the chip
carrier costs, the printed circuit cost and the support
costs are all inversely proportional to the number of bits
per chip, thus the advantage of high-density MOS-FET
array cireuitry is overwhelming,.

The chief drawback to MOS-FET circuits for semi-
conductor memories is their low gain-bandwidth
compared with bipolar circuits using equivalent geo-
metric tolerances. This shortcoming can be minimized
by using bipolar ecircuits to provide the high-current
drives to the MOS-FET array circuits, and by using
bipolar amplifier circuits to detect the low MOS-FET
sense currents. If the circuits are partitioned so that all
the devices on a given chip are either bipolar or MOS-
FET, no additional processing complexity is added by
mixing the two device types within the same system.
The use of bipolar support circuits also allows easy
interfacing with standard bipolar logic signals, thus
the interface circuits can match exactly standard
interface driving and loading conditions.

Given an MOS-FET array chip, the two most
important remaining choices involve the polarity of the
MOS-FET device (n-channel or p-channel) and the gate
oxide thickness. It is well known that the trans-
conductance of n-channel devices is approximately three
times that of equivalent p-channel device and thus the
current available to charge and discharge capacitance is
substantially greater. Since the substrate is backbiased
by several volts in an n-channel device, the source-to-
substrate and drain-to-substrate capacitances are also
slightly lower, with the net result that n-channel
circuits are a factor of two to three faster than equiva-
lent p-channel circuits. This speed difference is eritically
important if address decoding and bit/sense line gating
are to be included on the MOS-FET chip. Because the
transconductance of a MOS-FET device, and conse-
quently its ability to rapidly charge and discharge a
capacitance, is inversely proportional to the gate oxide
thickness, it is advisable to use the minimum thickness
that the state of the art will allow; in this case 500
Angstroms was chosen as the minimum that would give
a good yield of pinhole free oxide with adequate
breakdown voltage. Other key device parameters are
tabulated below:

V: = 1.25V nominal with substrate bias

psub = 2Qcm P type

ym 33.5ua/v nominal

pd = 7Q/square N type

58 Fall Joint:Computer Conference, 1970

I EPeren | $¥%cy e, |
1 Jov S UNITS |32 UNITS 32 UNITS
H ENABLE | sv
TR L N—
- T g A
[|02 vnirs
= — ForsE |

[~ FO=32 CELLS —¥

T
1TCH
uNITS FO=
32 "ORD"
B8/3 PAIRS

Figure 7—Array chip cross-section

Chip partitioning

Since it was desired that the same chip set be used to
configure memory systems of different sizes, different
word lengths, and different system speeds, many of the
chip partitioning choices are obvious. The timing
circuits, which are used only once per system, are
contained on a separate chip. The sensing and bit/drive
circuits are combined on one chip to allow easy expand-
ability in the bit dimension. The array drivers are
contained on a third chip type to allow easy expansion
in the memory size, while general buffering and gating
logic make up the fourth chip type. The most important
chip-partitioning choice involves the dividing line
between bipolar and MOS-FET circuits at the array
chip interface. By including the array word-line
decoding and the array bit/sense line gating on the
array chip, the number of connections to the array chip
can be greatly reduced, allowing the chip carrier wiring
to be less dense and the chip pad size and spacing to be
relaxed. The complexity of the bipolar support circuitry
was reduced still further by including the address
inverters on the array chip, with a small penalty in
delay. If a MOS-FET sense amplifier/bit driver were
included on the array chip, however, the increase in
delay would be excessive, owing to the poor response
time of MOS-FET high-gain amplifiers. In the design
shown here, the cell sense current is gated to a bipolar
sense amplifier for amplification and diserimination, and
the cell nodes are driven through the same MOS-FET
gating circuits to the desired state during the write
operation. This arrangement requires that approxi-
mately 35 percent of the available array chip area be
used for decoding and gating circuits, with the remaining
65 percent used for storage cells. Figure 7 shows a

cross-section circuit schematic of the array chip.
Included below are nominal chip parameters:

Address input capacitance . . . (including gate pro-
; tective device) 4pf
Enable input capacitance . . . (depending on ad-
dress) 2.75 pf or 20pf

Restore input capacitance . . . (including gate pro-
o tective device) 57pf

Sense line input capacitance . . . 5.5pf

Select input capacitance . . . 8pf

Word line capacitance . .. 7.5 pf

Bit line capacitance . . . 2pf

Sense current . . . 150ua

Maximum gate protective device input 3400V

Storage cell

Typical MOS-FET storage cells are shown in
Figure 8. In cell 8(a), T; and T, form the cross-coupled
pair, while T'; and T4 gate the external circuitry to the
cell nodes, either to sense the state of the cell by
detecting the imbalance in the current through 7'; and

+Vv

BIT / SENSE BIT / SENSE

WORD DRIVE

+V
1
RESTORE |
Fe—e
BIT / SENSE ~— — < BIT / SENSE
T3 I[_-" T nl‘:ll T4
WORD DRIVE

(v)

(e)

BIT /7 SENSE

Figure 8—Storage cell configurations

Design of Mega-Bit Semiconductor Memory System 59

THIN OXIDE
—\ SOURCE
X
lr—— ——

L W J—DRAIN

I

Figure 9—W /L ratio

T, or to write into the cell by pulling one node to ground
while simultaneously driving the other cell node posi-
tive. The load devices, Ts and T, replace the leakage
current from the more positive node during stand-by.
Since one of the load devices has full voltage across it at
all times, the standby power dissipation of the cell will
be quite high in comparison to the cell sense current
unless the W/L ratio, Figure 9, of the load device
(T's, Ts) is made very small ecompared to the W/L ratio
of the cross-coupled device (T,, T.). This, in turn,
requires that either the load devices or the active
devices or both occupy a large chip area. In addition,
the standby load current flowing through the on-biased
active device provides a voltage drop across that device,
tending to unlatch the cell. This effect can be com-
pensated for by increasing the value of all device
thresholds, however, this will require a higher supply
voltage to maintain the same standby current thereby
increasing the power dissipation.

In cell 8(b), the standby power is reduced by pulsing
the “restore’” input at a clock rate sufficiently fast to
replace leakage current from the cell node capacitance,
while maintaining a low average power drain. The chief
drawback to this cell is the five connections must be
made to the cell, with a resulting increase in cell
complexity over (a) above.

Cell 8(c) shows the configuration chosen for this
memory. In this cell, both the word selection and the
restore functions are performed through the same
devices and array lines, by time sharing the word-select

and restore line. During read-out, the cell operation is

similar to 8(b) above. At the end of each memory cycle,
however, all word lines are raised to the “restore” level
for a period sufficient to recharge the cell node capaci-
tances, then all word lines are dropped and the next
memory cyecle can begin. Selection of the ‘“‘restore’ level
is dependent on the speed at which the cell. node
capacitance is to be charged and the sense line voltage
support level required during restore. Too high a
“restore’” level creates a large current flow thru the
restore devices lowering the sense line voltage used to
charge the cell; too low a voltage prevents the cell node

capacitance from reaching the required voltage for data
retention. This cell employs fewer devices and less
complex array wiring than either of the cells above, and
thus requires substantially less silicon area. The
disadvantage of this approach is that the restore
function must be synchronized with the normal read/
write function since they share the same circuitry. The
average power cannot be made as low as in (b) above,
since the restore current and the sense current are both
determined by a common device, and the restore
frequency is determined by the memory cycle time;
however, the average power can be made significantly
lower than with the static cell 8(a) above.

MOS-FET support circuits

The MOS-FET support circuits employed on the
array chip are shown in Figure 10. A better understand-
ing of the ecircuit operation will be gained by first
considering the MOS-FET inverter circuit (Figure 10).
At the end of a read/write cycle, the input address level
is held down, the E level is down, and the R line is
pulsed positive, charging node A to approximately 47
volts. When the R pulse has terminated, node A
remains positive awaiting the next input. At the start
of the read/write cycle, the address input is applied to
T,; if the address line is positive, node A quickly
discharges through 7T), and when E is applied to T,

SELECT / REFRESH

o i
pETETGTGEEN

ADDRESS | 5
(b)
+V E
L A ;_”_
: " T3
i
ADDRESS INPUT +—]| Y

- s
(a)

Figure 10—Array chip inverter-decoder circuits

60 Fall Joint Computer Conference, 1970

T'; remains non-conducting and the address inverter
output remains at ground potential. If, however, the
address input line is a down level, then node 4 remains
charged to +7 volts, and both T and T, are cut-off,
while T'; is biased on. When a positive E pulse is
applied to T3 current is capacitively coupled into
node 4 from both the E node and from the output node,
with the result that node A4 is driven more positive than
either ; thus 7'; remains strongly biased on, charging the
output node capacitance to the level of £. When the
positive E pulse is terminated, the same action quickly
discharges the output to ground through the E line. At
the end of the address pulse, a positive B pulse is again
applied to T, restoring node A to -+7 volts. This
regenerative inverter has several advantages over a
conventional source follower circuit; (a) the output up
level is set by the level of the F input, and does not vary
with the device threshold voltage; (b) the output rise
time is nearly linear, since the gate-to-source bias on T';
remains well above the threshold voltage throughout
the transition, and (¢) this same high conductance
output device can be used to both charge and discharge
the load capacitance. Since the leakage current from
node 4 during a cycle is negligible, the final potential
of node A, and thus the output drive current, is
determined by the capacitor-divider action of the
gate-to-source, gate-to-drain, and gate-to-substrate
capacitances associated with device T;. Any of these
capacitances can be artificially increased to optimize the
circuit operation. The operation of the decoder circuit
(Figure 10b) is similar to the inverter just described,
with the bi-level chip select/refresh line replacing the E
input discussed previously. Thus, a single word line is
selected to the higher (Select) level during the Read/
Write portion of the cyecle, while all word lines are
selected to the lower (Refresh) level during the Restore
portion of the cyele. Thus the cell input/output devices
are biased to a low impedance to provide maximum
sense current during readout, and to 4 higher impedance
to reduce the power dissipation and maintain the
necessary sense line voltage during the restore operation.

Protective devices are used on all gate inputs to the
array chip to reduce the yield loss from static electricity
during processing, testing; and assembly. Because the
array chip uses a P-epitaxy grown on a P+ substrate it
was possible in this system to replace the usual RC
protective device with a more favorable zener type. This
device is an' N+ diffusion diffused at the same time as
the source-drain diffusions and exhibits a low internal
impedance when its depletion region intersects the P+
substrate. The required reverse breakdown voltage is
obtained by controlling the depth of the N+ diffusion.
When driven with an impedance equivalent to a human
body, approximately 1000 ohms, gate protection is

r
| S |]
—A—] WA —
R
s | Vor | | v
| | Nnumeer of | _] Veate
Vin | | ELEMENTS — :
r APPROACHES [
| ¢ | INFINITY |
| []
. | | |
[, 3 T

Figure 11—Gate protective device

provided for input levels up to 3400 volts. Figure 11 and
equation 1 represent the characteristics and operation
of this type protective device as presented during the
IEEE, International Electron Devices Meeting, October
29 thru 31, 1969.! For analysis the device is arranged as
a series of distributed elements; each element con-
taining sub-elements r,, 74, and V zg.

Veate=Vr+{(Vin—Vgr) (rsra)? [cosh (ryy/ra) V2 } /
R+ (rerg)t2 1)

In this design v, the number of elements, was set at
nine with the following sub-element values:

rs = 4.27 ohms
r = 61.2 ohms
VBR = 30 VOltS

The maximum capacitance before breakdown is
1.25pf. : '

Bipolar support circuits

Because of the critical timing relationships required
among the Select/Refresh, Enable, Address, and Re-
store pulses to the array chip, all timing pulses are
generated on each card by a special timing chip and three
tapped delay lines. This arrangement-allows each card
to be fully tested with the timing circuits that will drive
it, and minimizes any interaction between cards in a
multi-card system.

The TTL compatible buffer chip allows interfacing
conveniently with the TTL compatible logie of the using
system, and ‘minimizes the loading which the memory
presents to the system. '

A schematic cross-section of the Drive and Sense
circuits is shown in Figure 12. The Driver module, when
addressed, selects a row of nine Array Chips from a low
impedance TTL output. The ten address inputs to the

Design of Mega-Bit Semiconductor Memory System

61

T0 7 OTHER ARRAY CHIPS

CROSS SECTION

APDRYSS(0-9)

ARRAY

DRIVE -SENSE SCHEMATIC

ENASLE - o -
e] Fia.12
— TO 8 OTHER ARRAY CHIPS
oo - g T N
I 3 L1 [e
I g one
] LINE LN
ROwW SELECY 1l /
TIMING 18—
o4
ay o
ADORESS » Row
neurs - 22 : 3 our |

v

one [

baIve] ome

our . DRIVER
| SENSE AMPLIFIER Tttt .
! |
| I
H I
I I
1 |
| e DATA |
{ \ f uren >0
! 1
| J |
i
| |

cnpo— 2 |
L = _
sey SO mesar
™ ™

Figure 12—Cross-section drive-sense schematic diagram

Array Chip serve to select one bit of the 1024 bits/chip.
The write pulse permits the data-in to be loaded
differentially into the single bit which has been ad-
dressed. The removal of the write pulse turns off both
the “one” and “zero” bit drives with the low impedance
active pull ups rapidly charging the capacitance of the
bit lines to a voltage level required for the read mode of
operation.

The sense amplifier requires a minimum differential
signal of 50 microamps to detect a “one” or “zero”
stored in the addressed bit. This information is trans-
ferred to a set-reset latch which is included to increase
the “data-good” time to the using system.

During a portion of every cycle not used for read/
write operation the timing chip provides refresh and
restore timing pulses which turn on all the driver mod-
ules on the memory card to a lower voltage level, and
perform the refresh operation previously discussed.

All four of the bipolar support chips are packaged
one-chip per chip carrier, to allow flexibility in con-
figuring various size memory systems. In all cases,
the power density is limited to 600 mw per chip carrier,

150

140

VARIATION OF au‘ztlcr'rnl ON TEMPERATURE
VELOCITY AND INLET TEMPERATURE
CARD S1ZE 7.9"H,8.8"W

°|z‘o
b CARD PITCH = 0.6"
DULE PITCH = 0.7"
: \L WODULE R
‘ 110
100

90

130

g

I~

\\

80
150 200 250 300 350 400 450 500 550 600

——®= VELOCITY ft /min

Figure 13— Variation of junction temperature with velocity and
inlet temperature

62 Fall Joint Computer Conference, 1970

a level which allows for convenient forced-air cooling.
Because the limiting heat factor is the junction tem-

perature of the bipolar support circuits all cooling -
considerations are in respect to this parameter. Figure

13 illustrates the junction temperature as a function
of air flow thru the system.

CONCLUSION

The memory system described here is but one of many
possible sizes and organizations that can be created
using the same modular approach. If desired, several
smaller organizations can be used within the same
system without significant cost penalties. The system
approach to memory design has ereated an optimum
condition wherein each individual component is

matched to the other components with which it must
interact. This approach also yields a memory with
a simple, effective, easily usable set of interface re-
quirements. It is anticipated that increasing yields
will allow prices competitive with magnetic storage
for high-performance main memories. This low cost,
coupled with high performance and density, makes
a powerful combination for use in future system de-

signs.

REFERENCE

1 M LENZLINGER
Gate protection of MIS devices
Presented at International Electron Devices Meeting
Washington D C 1969

Optimum test patterns for parity networks

by D. C. BOSSEN, D. L. OSTAPKO and A. M. PATEL

IBM Laboratories
Poughkeepsie, New York

INTRODUCTION

The logic related to the error detecting and/or cor-
recting circuitry of digital computers often contains
portions which calculate the parity of a collection of
bits. A tree structure composed of Exclusive-OR gates
is used to perform this calculation. Similar to any other
circuitry, the operation of this parity tree is subject
to malfunctions. A procedure for testing malfunctions
in a parity tree is presented in this report.

Two important assumptions are maintained through-
out the paper. First, it is assumed that the parity tree
is realized as an interconnection of Exclusive-OR gates
whose internal structure is unknown or may differ.
This requires that each gate in the network receive a
complete functional test. Second, it is assumed that
detection of single gate failures is desired.

Since each gate must be functionally tested, an m-
input Exclusive-OR gate must receive 2™ input pat-
terns. It will be shown that 2 test patterns are also
sufficient to test the network of any size, if m is the
maximum number of input lines to any Exclusive-OR
gate. Hence, the procedure yields the minimum number
of test patterns necessary to completely test the net-
work for any single Exclusive-OR gate failure. It will
also be shown, by example, that the procedure is fast
and easy to apply, even for parity trees having a large
number of inputs.

GATE AND NETWORK TESTABILITY

Since the approach is to test the network by testing
every gate in the network, it is primarily necessary to
discuss what constitutes a test for an individual Ex-
clusive—OR gate. Although it is assumed that the
parity trees are realized as a network of Exclusive-OR
gates, no internal realization is assumed for the Ex-
clusive-OR gates. Hence, it will be presumed that all
2% input patterns are necessary to diagnose a single k-

63

input Exclusive-OR gate. Each gate, therefore, is
given a complete functional test so that single error
detection means that any error in -one Exclusive-OR
gate can be detected. The following is the definition
of a gate test.

Definition 1:

A test for a k-input Exclusive-OR gate is the set of
2% distinct input patterns of length k. Figure 1 shows a
three input Exclusive-OR gate, the 23=8 input test
patterns, and the output sequence which must result
if a complete functional test is to be performed.

If the output sequence and the sequences applied to
each input are considered separately, each will be a
vector of length 2*. Thus; the Exclusive-OR gate can
be considered to operate on input vectors while pro-
ducing an output veetor. Figure 2 shows a three input
Exclusive-OR gate when it is considered as a vector
processor. In terms of vectors, a test is defined as
follows.

Definition 2:

A test for a k-input Exclusive-OR gate is a set of k
vectors of length 2% which, when considered as k se-
quences of length 2%, presents all 2* distinct test patterns
to the gate inputs.

Theorem 1:

If K is a test for a k-input Exclusive-OR gate, then
any set M, MCK, having m, 2<m<k—1, elements
forms 25— tests for an m-input Exclusive-OR gate.

Proof:

Consider the k vectors in K as sequences. Arrange
the sequences as a k by 2* matrix in which the last m

64 Fall Joint Computer Conference, 1970

0o0o0l10111
ooloiotll
otool 0l

01110001

Figure 1—Three input Exclusive-OR gate with test patterns

rows are the sequences in M. Code each column’as a
binary number with the highest order bit at the top.
Since the columns are all distinet according to definition
1, each of the numbers 0 through 2*—1 must appear
exactly once. Considering just the bottom m rows, it
follows that each of the binary numbers 0 through
2m—1 must appear exactly 2*— times. Since each of
the possible sequences of m bits appears 2¥—™ times,
definition 1 implies that the set M forms 2% tests for
an m-input Exclusive-OR gate.

Network testability:

Two conditions are necessary for a network of Ex-
clusive-OR gates to be completely tested. First, each
gate must receive a set of input vectors that forms a
test. Second, any one gate error must be detectable at
the network output. For the first condition it is neces-
sary that the set of vectors from which the tests are
taken be closed under the operation performed by the
k-input Exclusive-OR gates. The second condition
requires that any erroneous output vector. produce -an
erroneous network output vector. The structure of this
set of vectors and their generation will be discussed in
the following sections.

AN EXAMPLE

The test pattern generation procedure is so simple
and easy to apply that it will be presented by way of
an example before the theoretical properties of the
desired sequences are discussed. The algorithm pro-
ceeds by selecting an arbitrary output sequence and

s

WHERE a = 00010111, b= 00101011, ¢ = 01001101, d= 01110001

|o lo |

Figure 2—Three input Exclusive-OR gate as a vector processor

Yo ¥ 1["2]|¥s|Wa|¥s|¥e

Wo = 1011100 w, o s 3W2W6W'W4

W, = 0lo01110 w, 0 W6W4W3W°W2
W, = 0010111

wi = 10010 : : :2 ° :ow5w4w|

Wy = 1100101 w_s il

4 (o] szo

Wsg = 1110010 Wy o W,

Wg = 0111001 We 5

Figure 3—Test sequences and their addition table

then successively determining input sequences which
test each gate to produce the desired output.

Figure 3 presents the seven sequences and the as-
sociated addition table that will be used in the ex-
ample. Figure 4 illustrates the gate labeling procedure
which will be used to determine the inputs when the
output is specified. Figure 5 shows the parity tree with
57 inputs and 30 Exclusive-OR gates of two and three
inputs arranged in a four level tree. The procedure
generates eight test patterns which will completely test
all 30 gates of the tree.

The procedure is initiated by assigning an arbitrary
sequence to the output of the tree. In the example,
W, is selected as the final output sequence. Employing
the 3-input gate labeling procedures shown in Figure
4, the inputs are determined to be Wi, W, and W,
With these three sequences, the gate is completely
tested. These inputs are then traced back to the three
gates in the third level. Using the gate labeling pro-
cedure again, the inputs for the gates from left to right
are Wi, W;, Ws; Wi, Wy; and Wi, W,. The sequences
assigned to the inputs can be determined quickly and
easily by making use of tracing and labeling. Under
proper operation, each gate is completely tested and a
single gate failure will produce an incorrect sequence

Wil WGWNI Wia W2 W@Wm

Yo

2-INPUT 3-INPUT

NOTE: Wj = Wj(moD 7)

Figure 4—Gate labeling procedures

Optimum Test Patterns 65

at the output. Above each input the required sequence
is listed, and the correet output is the sequence W,.
The test patterns are obtained by reading across the
sequences and noting the correct output. The test is
completed by adding the all zero test pattern. This
should produce a zero output.

THEORETICAL PRELIMINARIES

Consider the set of vectors generated by taking all
mod-2 linear combinations of the k vectors of a given
test set K. This set is obviously closed under mod-2
vector addition. In a parity check tree network an
input of any subset of vectors from this set will pro-
duce vectors in the set at all input-output nodes of
the Exclusive-OR gates. Some further insight can be
gained by viewing the above set as a binary group
code. The generator matrix G of this code, whose rows
are k vectors from K, contains all possible k-tuples as
columns. If we delete the column of all 0’s in G, the
resulting code is known as a MacDonald! code in which
the vector length n is 2*—1 and the minimum distance
d is 2¥71, The cyclic form of the MacDonald code is
the code generated by a maximum length shift register.?

Theorem 2:

Any independent set of k vectors from the Maximum
Length Shift Register Code of length 2*—1 forms a. test
set for a k-input Exclusive-OR gate, excepting the
pattern of all 0’s.

Proof:

Any independent set of k-vectors from the code
forms a generator of the code. In the Maximum Length
Shift Register Code as well as in the MacDonald Code,
2d—n=1. This implies** that any generator matrix
of the code contains one column of each non-zero type.
By definition 2, this forms the test for a k-input Ex-
OR gate excepting the test pattern of all 0’s.

Corollary:

For an m-input gate, m<k, any set of m-vectors
from a MLSRC of length 2*—1 forms a sufficient test.

The proof follows from Theorems 1 and 2.

The maximum length shift register sequences can
be generated? by using a primitive polynomial p(X) of

* In Reference 3 it is shown that in a group code with 2d—n =
¢t >0, there are ¢ columns of each type.

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
111 100 10! 100 010 00! 101 00! 110 100 0O100O0!I O11 110 100 101 111 111 OOI
HIO 111 010 IH1 100 101 010 101 OI1 111 100 101 O0i 011 11) OIO 110 110 101
011 110 100 110 111 010 100010 00! 110 111010 101 0O 140 100 O11 011 OI0
001 ONI 111 OFI 110 100 111 100 101 OI1 110100 O10 101 O1 1 111 001 OO1 100
100 001 110001 OI1 101 HIO |11 OtO OOI Of) 111 100 O10 0O 10 101 101 111
010 101 Oi1 101 OOI 1100l 110 100 101 001 10 t11 100 {01 Ol OI0 010 110
100 010 001 OI0 101 041 Q0K O11 111010 101011 HO 111 010 001 100 100011

450 361 O13 561 602 |24 013 124 346 561 602 124 235 346 56| Oi3 450 430 | 24

oJoxoxoxoxcxeoxoxcicicxoxocxcxoxoxoxolon

@) ® () ® (+) ® ®

&)

00—-=~0-0

Figure 5—Four level parity tree with test patterns

degree k in GF (2). Let g(X) =(X"—1)/p(X) where
n=2%—1. Then the first vector W, of the MLSRC is
the binary vector obtained by concatenating k—1
zeros to the sequence of the coefficients of g(X). The
vectors Wy, Ws...Wat_, are then obtained by shifting
Wi eyclically to the right by one digit for 2*—2 times.
The method is illustrated for k=3. A primitive poly-
nomial of degree 3 in GF (2) can be obtained from
tables? e.g., X+ X+1 is primitive.

9(X)=(X"-1)/(Xs+X+1) =X+ X24- X +1.
Then W, is obtained from g(X) as
We=1011100

The sequences Wy, W,...W, are obtained by shifting
W, cyclically as,

Wi=0101110
We=0010111
W;=1001011
Wye=1100101
Ws=1110010
We=0111001

Note that when Wy, is shifted cyclically to the right
by 1 digit, the resulting vector is W,. For the purpose
of uniformity of relationship among the vectors we

66 Fall Joint. Computer Conference, 1970

introduce the notation: Wi=Wimoa # 1. Now the
following theorem gives a method of selecting inde-
pendent vectors from a MLSRC. '

Theorem 3:

The vectors Wi, Wiy, ..., Wises in a MLSRC of
length 2% —1 form an independent set.

Proof:

Suppose ¢(X) is given by ¢(X)=¢,X"+g. 1 X'+
«o. + @1 X+go, where r=(2¢—1) —k. Then the set of
vector Wo, Wy, ..., Wiy are given by

Wo=¢r @gra . « e« g 0 O 0. 0
VV1 =0 gr Gra * * * . do 0O 0.+ 0
We=0 0 gr L I 0.« 0

.
.

Wk_1=0 0 0 O . . . g,r . o o . go

Clearly they are linearly independent. Because of the
cyclic relationship, this implies that Wi, Wy, ...,
Wik are independent.

Corollary:

The vectors Wiy, Wiis, ... ,\Wipm, and W.@W,. 1 ®
e . ®Wiim, (m<k), form an independent set. With
this as a test to an m-input Ex-OR gate, the correct
output vector is W.. '

As a direct consequence of the above theorems we
have the following algorithm for the test pattern gen-
eration for a given Exclusive-OR network.

Algorithm for test pattern generation:

It is assumed that the Exclusive-OR network is con-
structed in the form of a tree by connecting m-input
Ex-OR gates where m may be any number such that
m<k.

1. Select any vector W; from a MLSRC of length
2¥—1 as the output of the network.

2. Label the inputs to the last Ex-OR as Wy,

Wizyo oo, Wizm1, and W, @Wip1® ... ®Wipm.

3. Trace each of the above inputs back to the

driving gate with the same vector. Repeat steps

.(2) and (3) to determine the proper inputs to
the corresponding gates. ’

4. The vectors at the input lines to the Ex-OR tree
are then the test input vectors with the correct
output as W,.

5. An additional all 0 pattern as input to the net-
work with 0 as correct output completes the
test.

It is easy to see that the test patterns generated by
the above algorithm provide a complete test for each
Ex-OR gate in the parity check tree. Furthermore, any
single gate failure will generate an erroneous word
which will propagate to the output. This is due to the
linearity of an Ex-OR: gate. Suppose one of its inputs is
the sequence W, with a corresponding correct output
sequence W;. If the input W, is changed by an error
vector to W;+4e, then the corresponding output is
W ;j+e. Clearly, the error will appear superimposed on
the observed network output.

TEST MECHANIZATION

We have shown that the necessary test patterns for
a parity tree can be determined by a simple procedure
using a set of k independent vectors or code words
Wo, Wi, ..., Wiy from a MLSRC as the input to
each gate of k inputs. The result of applying this pro-
cedure to a network is an input sequence W; for each
network input and each network output. Testing is ac-
complished by applying the determined sequences
simultaneously to each input and then comparing the
expected network outputs with the observed network
outputs.

Let the gate having the greatest number of inputs in
the network show k& inputs. The entire test can be
mechanized using a single (2¥—1)-stage feedback
shift register. To do this a unique property of the
MILSR codes is used. From this property it follows that
the entire set of non-zero code words is given by the

Il |

prees ® @ ® e
2" -2 2 [

L .,

oW

Wan_3

Wzn_2

Figure 6—Shift register for generating test patterns

Optimum Test Patterns 67

2k —2 cyelic shifts of any non-zero code word: together
with the code word itself.

If a (2F—1)-stage shift register is loaded with a par-
ticular code word W, as in Figure 6, then the sequence
of bits observed at position 1 during 2¢*—1 shifts of
the register is the code word W,. Similarly for every
other position 7, a different code word W_, is observed,
so that the entire set of 2¢—1 sequences is available.
Since the correct output of the network is one of the
code words, it is also available at one of the stage out-
puts for comparison. The general test configuration is
given by Figure 7.

SELF-CHECKING PARITY TREE

Let us suppose that the test sequences and the shift
register connections for a parity network have been
determined as in Figure 7. A modification of this mecha-
nization can be used to produce a self-testing parity
network under its normal operation. The key idea is to
monitor the normal randomly (assumed) occurring
inputs to the network and to compare them with the
present outputs of the shift register. When and only when
a match oceurs, the comparison of the outputs of the
parity networks with the appropriate code words is
used to indicate either correct or incorrect operation,
and the shift register is shifted once. This brings a
new test pattern for comparison with the normal in-
puts. Every 2¢F—1 shifts of the register means that a
complete test for all single failures has been performed
on the network.

Iz"-l STAGE S.R. [
Vlo L—.

PARITY R
wZ" TREE e

OR

ERROR

Figure 7—General testing scheme

PARITY
H TREE
.

A‘
Wo ees |PWon_y Won_o

2"-1 STAGE S.R.
W,

ERROR

Figure 8—Self checking parity tree

The mechanization of the self-checking parity tree
is shown in Figure 8. The inputs to the AND gate
A, are the set of input lines of the parity tree which
receive the test sequence W,. The inputs to the AND
gates Ay 0 are the inverse of the input lines of the parity
tree which receive the test sequence W..

An alternate approach to self-checking is to use the
testing ecircuit of Figure 7 as a permanent part of the
parity tree. The testing is performed on a time-sharing
or periodic basis while the circuit is not used in its
normal mode. This is easily accomplished by having
the clock, which controls the shift register, gated by a
signal which indicates the parity tree is not being used.
This could be a major portion of the memory cycle
when the parity tree under consideration is used for
memory ECC.

CONCLUSION

‘We have shown that a very low and predictable number
of test patterns are necessary and sufficient for the
complete testing of a parity tree under the single failure
assumption. The required tests are easily and rapidly
determined by an algorithm which is presented. (An
application of this technique is also given for a self-
checking parity tree.) Since the effect of the input test
patterns is a complete functional test of each gate, the
tests are independent of any particular failure mode.

68 Fall Joint Computer Conference, 1970

REFERENCES 2 W W PETERSON
Error correcting codes
1 J E MacDONALD MIT Press Cambridge Massachusetts 1961
Design methods for maximum minimum-distance "error 3 A M PATEL
correcting codes Mazimal group codes with specified minimum distance

IBM Jof R & D Vol 4 pp 43-47 1960 IBM J of R&D Vol 14 pp 434-443 1970

A method of test generation for fault
location in combinational logic*

by Y. KOGA and C. CHEN

University of Illinots
Urbana, Illinois

and
K. NAEMURA

Nippon Telegraph and Telephone Public Corporation
Musashino, Tokyo, Japan

INTRODUCTION

The Path Generating Method! is a simple procedure
to obtain, from a directed graph, an irredundant set of
paths that is sufficient to detect and isolate all distin-
guishable failures. It was developed as a tool for diag-
nostic generation at the system level, e.g., to test data
paths and register loading and to test a sequence of
transfer instructions. But it has been found to be a
powerful tool for test generation for combinational
logic networks as well.

The combinational network to be diagnosed is repre-
sented as a set of complementary Boolean forms, where
complementation operators have been driven inward
to the independent variables using DeMorgan’s Law.
A graph is then obtained from the equations by trans-
lating logical sum and logical products into parallel
and serial conneections, respectively. A set of paths is
generated from the graph, which is irredundant and
sufficient for detection and isolation of single stuck-
type failures.

The advantage of this approach to test generation
lies in the irredundancy and isolation capability of the
generated tests as well as the simplicity of the algorithm.
Several test generation methods have been devel-
veloped,?:3:45:6 but none attacks the problem of efficient
test generation for failure isolation. Some of these
papers presented methods to reduce redundancy of

* This work was supported by the Advanced Research Projects
Agency as administered by the Rome Air Development Center,
under Contract No. US AF 30(602)4144.

69

exhaustively generated tests to isolate failures or near
minimal test generation methods for failure detection,
but their methods are impractical to generate tests
for actual digital machines. Actual test generation
using the method presented in this paper has been
done for the ILLIAC IV Processing Element control
logie, and is briefly discussed.

PATH GENERATING METHOD

In this section, test generation by the PGM (Path
Generation Method) to a given directed graph will be
discussed briefly.

Let us consider a graph with a single input and a
single output such as that shown in Figure 1. If this
actual circuit has multiple inputs or outputs, we add a
dummy input or output node and connect them to the
actual inputs or outputs so that the graph has only one
input and one output node.

There exist thirteen possible paths from the input
node Ny to the output node N; of the digraph in Figure
1, but not all of these are needed to cover every arc of
the graph. We arrive at a reduced number of test paths
in the following manner.

Starting at the input node, we list all the nodes which
are directly fed by the input node, i.e., have an in- -
cident arc which originated at the input node, and
draw lines corresponding to the arcs between them.
Level zero is assigned to the input node and level one
to the nodes adjacent to the input node. Nodes directly
connected to the level one nodes are then listed and
assigned to level two. This step is repeated until all

70 Fall Joint Computer Conference, 1970

INPUT

ouTPUT

Figure 1—A directed graph

nodes are covered. If a node has already occurred on a
higher level-or previously on the same level, we define
it as a pseudo-terminal node and cease to trace arcs
down from it.

Whenever a path from the input reaches a pseudo-
terminal node, we complete the path by arbitrarily

@ denotes
a’ pseudo
terminal node.

Ns

OuUTPUT

Figure 2—Generated test paths

o ‘
b an /1
c (74| ‘ d
d=a-b-c

graph complement graph

O and 1 denote a stuck-at-one and stuck-at-zero

failure, respectively, and * denotes a masked failure
by the output failure.

Figuré 3—AND gate and its graphic representation

choosing any route (usually the shortest) which goes
from it to the output. Six paths are obtained from the
digraph in Figure 1 as shown in Figure 2, where short-
est paths are selected after reaching a pseudo-terminal
node.

The main advantage of this test generation method
is that the set of paths generated by the PGM is an
irredundant set which is sufficient for detecting and
locating any distinguishable single failure within any
cycle-free graph. It should be noted that any arc in the
graph is assumed to be able to be actuated independ-
ently for a test path.

GRAPHIC REPRESENTATION OF
COMBINATIONAL LOGIC

To apply this PGM to a combinational logic network,
a graphic representation of a combinational logic
which takes into account stuck-type failures must be
used.

An AND gate with three inputs and one output has
possible s-a-1 (stuck at one) and s-a-0 (stuck at zero)
failures. A s-a-0 failure at output d is indistinguishable

Method of Test Generation 71

from each s-a-0 failure of the inputs a, b and ¢, but there
exist five distinguishable failures, as shown in Figure 3.

Let. us consider the straightforward graphic repre-
sentations of this AND gate and its complement ex-
pression. In this example, a, b and ¢ can-denote simple
variables or sets of subgraphs representing parts of a
logic network. Note that if the four paths are assumed
to be paths to test the AND gate where these paths
can be actuated independently, all distinguishable
faults can be detected and single faults can be located.
The graphic representation is slightly modified to
demonstrate this, as shown in Figure 4, where Fa_o
means no such fault that the output d is s-a-0.

It is obvious that any one of five distinguishable
faults can be located by the four test paths, where only
one test path should be completed for each test. To
generate a set of test inputs, variable values should be
assigned such that only the path to be tested is com-
pleted and the rest. of the paths are cut off. The test
values for the variables (a, b, ¢) are determined to be
(1,1, 1), (0, 1, 1), (1, 0, 1) and (1, 1, 0) for a three
input AND gate.

If one input variable is dependent on another then
normally distinguishable failures may become indis-
tinguishable. For example, if variable a is dependent
upon variable b, then a s-a-1 failure at input a and a
s-a~1 failure at input b may become indistinguishable
or undetectable.

Whenever any one of the variables a, b, and ¢ is re-
placed by a subgraph which represents a part of a logic
network, the same discussion is extended to the complex

Figure 4—Complex graph for test generation to take into
. aecount failures

e}
b — ' e
d

[+
(a) oOriginal Logic gat d-ab+c
o _EQJ._.
" iD@L

=0 d

(b) Possible gate failures

a b

g;. Fb'l
=)

(c) OR gate test e
generation graph

subgraph for e and €

E’ denotes a new indistinguish-
O 'Faﬂ able failure by connection.

(d) oGraph for test generation

Figure 5—A logic network containing a negation

graph. Also, a similar argument can be applied to an
OR gate. If a NOT operation appears between two
successive gates, the input variables to the following
gate are replaced by the dual subgraph of the preceding
gate. Alternatively, the graph will be given directly
from equations modified such that negations are driven
inward to the primary input variables by applying
DeMorgan’s Law to the given Boolean equation. For
example, the graph for test generation with the logic
network in Figure 5a is given as shown in Figure 5d.

The same graph is derived from the transformation
of the Boolean equation as

d=ab+c=a+b+c

and the graph for test generation is given directly by
the above equation. It is obvious that distinguishable
failures in the original logic network are still distin-
guishable in the complex graph representation for test
generation.

72 Fall Joint Computer Conference, 1970

________ 1
FERTCoTe ! :
t
——__, FYEEACCL e :
FEUF LR 1 T
1 1T || Vi T o ||
1
|) i
Ry :D: b ——— ~
1 i
1t [
TS
ML, 2N M/ > |ee——me———
FYEVLTCOT o
PR W11
N -
PAW-W17--1

FREE .

FYESEAMLT1e—

1
-va-El-»S::I:D—'
L

FYESBABLY 1

Figure 6—An example of control logic of ILLIAC IV PE (Closed
dotted line denotes an IC package and half one denotes
a part of IC package)

From the previous discussion it will be noted that if
those input variables which correspond to the nodes
in a path test through the original graph of a logic func-
tion are activated, the combinational logic network will
give an output of a logic 1, whereas if the path goes
through the complement graph, the output will be a 0.
For example, if we set a=1, b=1 and ¢=1 in Figure 4,
the output of the network is a logical 1. If a, b or ¢
stucks at 0, the faulty network will produce output 0
instead of 1. This test can detect single failures a, b, ¢
or output d stuck at 0.

In order to detect the s-a-1 failure of input line @, b, ¢
and output line d, the path tests in the complement
graph are required. A s-a-0 type failure of one node in
an original graph will become a s-a-1 type failure in
the complement graph and s-a-1 type failure of one
node in an original graph will become s-a-0 type failure
in the complement graph. Now it is clear that the com-
plement graph of the original graph is required for the
output stuck at .

In test generation methods which have been pre-
sented in the past, the relationships between test gen-

eration and distinguishable failures in a combinational
network were not clearly established. The main ad-
vantage of the graphic representation of a combina-
tional network (including the complement expression)
is that the graph contains failure information explicitly
as discontinuities of arcs or nodes instead of s-a-0 and
s-a-1 failures in the original combinational logic
network.

TEST GENERATION FOR COMBINATIONAL
CONTROL LOGIC

The output of any portion of a computer control logie
is usually governed by many input conditions, but the
fan-in of a typical logical element is usually restricted
to only a few inputs. This causes the number of gate
levels necessary to generate a function to increase and
the structure of control logic becomes tree-like. The
network shown in Figure 6 is a typical control logic of
the ILLIAC IV PE. Since there are about 50 distin-
guishable failures in the network, about 50 iterations
of a path sensitizing would be required by conventional
technique, or more than 8000 terms would have to be
handled by Armstrong’s method.? In both cases, neither
the irreducibility of tests nor the isolation capability
of distinguishable failures would be guaranteed.

The network of Figure 6 is translated into the graph
of Figure 7 and Figure 8, from which the PGM will
generate tests, and the irredundancy and isolation
capability of the generated tests are guaranteed as well
as the simplicity of the algorithm.

To make a test path in the graph, the variables on
the path under test should be actuated and the rest of
the paths should be cut off. If the original logic net-
work does not have a complete tree structure, a few
conflicts may occur in assigning values to variables to

Figure 7—A graph representation of Figure 6 logic diagram

Method of Test Generation 73

make a test path generated by the PGM. These may
easily be resolved, as will be shown later.

Transformation of boolean equations to arc descriptions

The description of a combinational logic network is
assumed to be given by a set of Boolean equations
using the operators AND, OR and NOT.

For example, from Figure 6 of a part of the control
logic of the ILLIAC IV PE, the Boolean equation is

FYEM32-LOT PMW-E1-—-0

FYEELA-HMT
FYES-ACLCL
PMW-E1---0

FYEM648L-T P-EX-UF-LH
PMW-E1---0
4
FYEELA-HMT
D
PEXDI-L48L" P-CARRYH-L FYE9BASLIT
PMW-E1---0
FYEELA-HMT .
o PAW-W10-1
FYEM329L1T
(J O) Qo ——mm—m—
PAW-W17 -1 P-EX-UFILH [PAW-WOS--1
PAW-W16--1 -
FYEMULTLST, O PBW-W09--1
PMW-E1---0
—) Q ————
PAW-WOL--1 FYEELA-HMT
B —— D
PBW-WO01--1 P-EX-UF-LH
raW-Woz1 > FYMB49L-T ° pMw-E1--0

0 ——————————
FYEELA-HMT

PGC--16--1
FYE9BABLIL
O pMw-€1---0
—_— O
FYEE1A-HMT
P EYE98ABLF1
PMW-E1--0 ~pL71-0

Figure 8—A complementary graph of Figure 6 logic diagram

PYEB-ACLD1 «(((PMW-E1---O AND NOT FYEM32-I0T) OR

((FYEE1A-HMT OR NOT PMW-E1---0) AND NOT
FYEB-ACIC1) OR

((NOT P-EX-UF-IH AND

(FYEE1A-HMT OR NOT PMW-E1---0)) AND NOT
FYEMAUBI-T) OR

(NOT FYEQBASLIT AND

((FYEE1A-HMT OR NOT PMW-E1l---O) AND NOT
P-CARRYH-L AND NOT PEXDI-IM8L))) OR
((P4W-W10--1 OR PAW-WO9--1 OR
PBW-WO09--1) AND

(NOT P-EX-UF1LH AND

{NOT PAW-W16--1 AND PAW-W17--1) AND
(NOT FYEM329L1T OR NOT FYEMULTLOT) AND
(FYEE1A-HMT OR NOT PMW-E1l---0))) OR
(((FYFE1A-HMT OR NOT PMW-E1l---0) AND NOT
P-EX-UF-IH AND NOT FYEMALOL-T AND

(NOT PAW-W16--1 AND PAW-W17--1)) AND
(PAW-WO1l--1 OR PBW-WO1l--1 OR
PYW-W02--1)) OR

((PGC--16--1 OR P--1-TI--0) AND
(((FYEZ1A-HMT OR NOT PMW-E1l---O) AND NOT
FYEQBABLI1) OR

(NOT FYE9Q8ABLF1 AND

(FYEEIA-HMT OR NOT PMW-E1---0)))));

Figure 9—Squeezed equation of Figure 6

derived* and this equation was then ‘squeezed’ by a
program as shown in Figure 9, where logical constants
(used to disable unused gate inputs) are removed from
the functional Boolean expression, and NOT operators
are driven into the innermost individual variables of
the equation by use of DeMorgan’s Law.

Now we try to transform the Boolean equations into
the graph descriptions. AND operations are trans-

* In the case of the ILLIAC IV PE design, the Boolean equations
are automatically generated from wiring information. This same
equation set was also used for debugging the logical design.

74 Fall Joint Computer Conference, 1970

z =a AND b z=2aO0Rbd

a d (dummy node)

nl

{a) AND operation {b) OR operation

Figure 10—Transformation of the Boolean equations into graph.
AND operation in graphic form

formed into series connections and OR operations into
parallel connections as shown in Figure 10.

The graphic representation of a combinational logic
network is translated as arc description for the input
to the PGM program. The AND operation, ¢ AND b,
is translated as b«—a, where a is the source node and b
the destination node. The OR operation is translated
as a<—dnl, dn2«—aq, b—dnl and dn2<b, where dn repre-
sents dummy node.

In the arc description generation program which we
developed, redundant dummy nodes are removed in-
sofar as possible. For example, dummy nodes can be
eliminated from the OR operation in the various ways
shown in Figure 11 depending on the original Boolean
equation. ‘

For ILLIAC IV PE control logic we get 111 Boolean
equations. The 111 Boolean equations and their 111
complemented equations can be visualized as 222 sub-
graphs and all connected to an input node and output
node. The arc descriptions of this big graph are pro-
cessed by a program (PGM algorithm) to produce a
set of 464 paths for diagnosis.

Conflict and sneak paths

In a graphic representation, every path on the graph
is assumed to be able to be actuated independently to
the other paths, but this assumption is not always
true in the case of combinational logic network
representations.

For example, if there is a variable on a path such
that the variable simultaneously completes one portion
of the path and opens another portion of the path,
that is, the variable x appears as both z and % in one
path, then no test path actually exists.

In the following theoretical discussion, these prob-
lems will be analyzed accurately.

Let 2z be a Boolean function of the Boolean variables
X1, X2, ..., %, and expressed as z=2z(x1, s, ..., Ls):
Let P be one of the path tests generated from the are
description of the Boolean function z, and, be defined
by a set of Boolean variables on the path as P=
{x1,, 15y - . ., T1,} Where xy,, 2, ..., 2. {2, 22, ...,
Zp, Ty, fz, .. ;,2_7,,}. . ‘

A path P={z,, 21, .. .,%,} is said to have a
conflict if there exists at least one z; such that z;€
{2y, X2y .o o, Zn}, 2y=2; and xy=3; for myy, x,C
{xlu Ligy o -+ xla}‘

The conflict in the path will cause some trouble in
the assignment of the variables. Most of the time, they
can be avoided and this will be discussed in the next
section.

Let P={xi, 15, ..., %1} be one of the paths and
(1, ¥2, - - - , o) be one of the value assignments where
vi=11if ¢€{l, by, ..., l.} and the other v; values are
arbitrarily chosen. If there exists another path P’ such
that P’={Zh,, Thay ..., Tny] Where Zp,, Tas ..., Tas€
{1, T2, .. ., 22} and zs,= ... =z,=1 after the above
agsignment, the path P’={xy,, Zp,, . . ., Tag} is called
a sneak path.

The sneak path P’ is actually a path with its variables
being assigned 1 in addition to the path P in which we
are interested. The test values assigned to the variables
of the path test P={x;,, 15, . . ., 2.} can detect stuck
type failures s-a-0 or s-a-1 for each literal in the path.
For example, if one of the input signals is z;(€ P) then
the test pattern derived from P can detect a s-a-0 failure
at input z;. If one of the input signals is z,(€P) and
its literal Z; appears in P, that is Z;€ P, then the test
pattern derived from P can detect a s-a-1 failure at
input z;. Note that this detectability of the failures as-
sociated with the input z; is under the assumption

'

)AND(ApRB)AND(ii) ¢ AND (A #R B) AWD (...)

c
dnl
A B A B
E E

iii) { ..fR..) AND (A #R B) AND E iv) C AND (A fR B) AND E

Figure 11—OR operation in graphic form

Method of Test Generation 75

that there are no conflicts or sneak paths for any test
value assignment to the variables in the path. Ap-
parently redundancy in the original logic network
causes sneak paths in the graph representation, and
these sneak paths reduce the detectability of failures
by the path tests.

This is discussed more precisely as follows: Let
P={xi, 21, ..., 1,}, where 2,(j€{1,...,a}) is a
literal in the path we are interested in and P'=
{Zhy) The - - - T} (FP) is a sneak path as defined pre-
viously. Let a subset P” be defined as P""=PNP’.
Then the test value assignment to the variables of
path P can at most detect stuck-type failures in the
input signals i, &1y, ..., 2,,€P”. The test pattern
cannot detect failures in xy,,,, ..., 2, EP—P"".

This is proved as follows:

If a path P is in the original graph, a sneak path P’
cannot be in the complement graph. Let P be in the
original graph corresponding to the logical network
function f and P’ be in the complement graph corre-
sponding to the complemented logical network func-
tion f. Then we can express f and f as follows:

f=x,.21,... .2, R

f= ZThy Lhao « .SU;,5+R2

By sneak path definition zi,, 1y, . . . T1,, Tayy - - . ZThg
are assigned 1, therefore f=1-+R;=1. But f=1 con-
tradicts f=1+R,=1. So a path P being in the original
graph and the sneak path P’ being in the complement
graph cannot exist. Similar arguments can be applied
to prove that a path P be in the complement graph and
a sneak path P’ being in the original graph cannot
exist. So P and P’ both must be in the original-graph
corresponding to the Boolean function f or both in
the complement graph corresponding to the comple-
mented function f.

First, assume that the path P and the sneak path
P’ are in the graph, not including complement expres-
sion, corresponding to the original logic function f. If
all the variables in the path P are ANDed together
the result is z;,21,21, . . .21,. This is a term of the Boolean
expression of the logic network function f after ex-
pansion but before simplification. Similarly for the
sneak path P’ we get another term zi&s,...zs, for
the Boolean function f. Let f=1,. .2, +s,. . .@n,+R.
Where R is the logic sum of the remaining terms of the
Boolean function f.

Since xi,, Ty - . . , 1,€ P =PMNP’, we can rearrange
the function f as follows:

f=z121,.. Zig) +R.

I TR C TP TV T o P S

According to the value assignment and sneak path

definitions, we assign 1 to 1, 15, . , T, and Zp,, ., Tag
for the variables corresponding to the path P. A test
with logic value assignment 1 to 2; can detect a s-a-0
failure at location z; if the change of the logic value
from 1 to O will result in a change of the logic values
at the output. On the other hand a test with logic

value assignment 0 to z; can detect a s-a-1 failure at

location z; if the change of the logic value from 0 to 1
will result in a change of the logic value at the output.
First consider the s-a-0 failure for x;; where z;,€P"
and z;; is positive. Under the value assignment scheme
=1, ;,=1,..., v,=1, 2p,=1, ... and zs;=1, also
R=0. If 2;; stucks at 0 and R still remains at 0, this will
change the function value from 1 to 0. This corresponds
to the change of the output of the combinational logic
network from 1 to 0. If R contains such one term in the
form of sum of products, as & Xk Tx,. . .2, and 2, =
Zry= ... =2, =1 and Z;;=0 under the previous assign-
ment, the stucking at 0 of z;; will change R from 0 to 1.
This keeps the output remain at 1 when the input z,;
stucks at 0. Therefore, the test derived from the path
P cannot detect the s-a-0 failure a z;;. This will not
occur when x;; is a one-sided variable. So the test can
detect the s-a-0 failures for those positive one-sided
variables x;; in P". For the variables x:;,,, i .-
and x;,, € P—P", the test cannot detect the failures.
Assume z;€ P—P” is a positive variable and stucks at
0. The term x;;, ,1,,,. . .71, becomes 0 but ., Thsps- - -
Zap is still 1 under the same value assignment scheme.
Since all z;’s € P are assigned logical 1, the function
value still remains at 1 regardless of whether z;€ P—P"’
is 0 or 1. So the test cannot detect the s-a-0 failures for
any positive variable z;in P—P”.

Similar arguments can be applied for s-a-1 failure
of x; and its literal ;€ P. Now we have only proven
those paths in the original graph which correspond

to the Boolean function f. Similar arguments can be
apphed to those paths in the complement graph except
the function is f instead of f.

If P”=PNP’ is an empty set, the test derived from
P cannot detect any failure. Thus this test is useless,
and such a path P is said to have a fatal sneak path P’.

Test generation

The PGM program generates a set of paths from
the arc descriptions of the combinational logic network.
These paths will be processed to produce a set of test
sequences to detect and locate the failures.

Let z be a Boolean function of Boolean variables
21, X2 ..., &, and expressed as z2=z(x;, Ta,. .., Tn).
Without loss of generality, assume z is positive in
2y, &3, . . ., &; and negative in Zyq, Tiyo, . . ., &5, that is,

76 Fall Joint Computer Conference, 1970

x; through z; appear in uncomplemented form and
x;43 through z; appear in complemented form only. But
z is both positive and negative in x;1, Zjys, ..., n.
That is, both z; and :(j+1<k<n) appear in the ir-
redundant disjunctive form of z. For example, if
2(x1, X2, T3, T4) = TyLa+T2Ls+E, then z is positive in z;,
negative in x; and x, but either positive or negative in
z3. Let us define those variables z;, 2., . .., z; and
Ziy, - . -, T; as one-sided variables and those variables
Zjq1y Tits, - - -, &n as two-sided variables.

Suppose the PGM program produces paths Pj,
Py, ..., P, from the arc description of the equation
2=2z(xy, Zs, . . . , Tn). Consider only one path P;. Let
Py be defined by a set of variables on the path as
Py={z;, x15, ..., %,}, where

Tiyy Tigy o ooy X1 € {1, Xy . . ., Tn).

Let z,, 215, . . - , 21, be defined as variables inside path
and other variables as variables outside path. For ex-
ample, if we have z=2z(xy, 25, 3, 1) and Pi= {1, 22},
then x; and z, are variables inside path and z; and x4
are variables outside path.

If Py= {1, xi1,, . . ., 21,} is one of the paths produced
by PGM program from the arc descriptions of the
equation z=z(zy, s, . . .), then one can get the test
from P; by the following procedure:

1. Set the positive variables inside path at 1 and
the negative variables inside path at 0.

2. Check two-sided variables inside path. If z; and
Z; appear in the path, conflict occurs. Stop. If
only positive form x; of the two-sided variables
x; appears in the path, set it at 1. Otherwise at
0.

3. Set the positive variables outside path at 0 and

negative variables outside path at 1.

Set the two-sided variables outside path at 0.

Check for sneak paths.

6. If a sneak path exists, change one of the two-
sided variables. Go back to step 5. If the sneak
path still exists after checking all the combina-
tions of the binary values of two-sided variables
outside path, check for the fatal sneak path.

7. If no fatal sneak path appears, the assignment
of the logic values is good. Therefore, a test is
determined.

Rl

When the PGM was applied to the ILLIAC IV PE
control logic, only six of 111 equations were discovered
to have path conflicts. Many of these conflicts may be
avoided by rearranging the input cards to the PGM
program, since the paths selected depend somewhat on
the ordering of the input equations.

Application to ILLIAC IV PE control logic

The ILLIAC IV PE can be divided functionally into
three major portions, the data paths, the arithmetic
units such as the carry propagate adder, the barrel
switeh, ete., and the control logic unit. Tests for the
data paths and arithmetic units have been generated
by other methods.!

To diagnose the ILLIAC IV PE completely, control
logic tests have been generated by an automatic test
generator system which uses the methods presented in
the previous sections.

The control logic test generator system consists of
the following subsystems:

—t

. Equation generation and simplification program

2. Transformation program to change Boolean
equations into arc descriptions

3. PGM program

4. Test generation program

a. Conflict checking

b. Value assignment to variables

¢. Sneak path checking

They are combined into the system shown in Figure
12.

Set of
equations of
the control
logic uhits

Path Generating
—*1 Method (PGM)
program

N\

(111 equations) accept up to

1000 arcs

Program which drives
the "NOT" to the
innermost individual
variables

T

Transformation from
Boolean equations
into the Arc
descriptions

Set of paths
generated from
Arc description 1

Test Generation
1. Confiict checking
2. Assignment of
the variables
3. Sneak path checking

Arc descriptions
of the Boolean
equations of
control units

Test
sequences

for control
logic. units

(1800 arcs)

Arc
description 1
(about 900

cord images)

Figure 12—Control logic test generation system

(464 tests):

Method of Test Generation

77

TABLE I—Value Assigned Tests for Combinational Logic Network of

Figure 6 Diagram

(THE OUTPUT SIGNAL IS PYES-ACLDI1)

SIGNAL NAMES

PATH NUMBERS
111111111122222222223333333333444
123456789012345678901234567890123456789012

FYES-ACLC1
FYE98ABLF1
FYE98ABLI1
FYE98ASLIT
FYEE1IA-HMT
FYEM329L1T
FYEM32-LOT
FYEMG648L-T
FYEM649L-T
FYEMULTLOT
P4W-Ww02—1
P4W-W10—1
PAW-W01—1
PAW-W09—1
PAW-W16—1
PAW-W17—1
PBW-W01—1
PBW-W09—1
PEXDI-L48L
PGC—16—1
PMW-E1—0
P-CARRYH-L
P-FX-UF1LH
P-EX-UF-LH
P—L-71—0

111111111101110111111111111111111111111011
111111001111111110111010100000000000000000
111110111111011111111100100000000000000000
111111110111111101111111111111111100011111
010110010000111010111001101111011101101011
101111111111111011100000000000010000000000
111111111110111111111111111111111111111101
111111111011101111111111111111111111100111
110001111111111111011110100001111111111111
011111111111111111111000000000010000000000
001000000000000000100110111111111111111111
100000000000000100001111111110111111111111
000010000000000000000110111111111111111111
000000000000000000010111111110111111111111
000001111111111011000000000100000100000000
111110000000000100111111110111110111111111
000100000000000000000110111111111111111111
010000000000000000000111111110111111111111
111111110111111101111000000000000001000000
000001010000100001000110100000000000000000
010110010001111010111111111111111111111101
111111110111111101111000000000000000100000
001111111111111011100111111110000011111111
110001111011101111011000000010000000001000
000000100000000000000110100000000000000000
THE FIRST 21 PATHS ARE FOR THE
OUTPUT “PYES-ACLD1” WHICH CORRE-
SPONDS TO THE ORIGINAL GRAPH.
THE REST OF THE PATHS ARE FOR°
THE COMPLEMENTARY OUTPUT “NOT
PYES-ACLD1” WHICH CORRESPONDS
TO THE COMPLEMENTARY GRAPH.

Table I shows the variable assignment for the control
logic tests in Figure 6.

Test dictionaries for failure location can be generated
by a system similar to the test dictionary generator
system associated with the PGM program. The test
dictionary generation will be reported in a separate
paper.

CONCLUSION

The path generation method for test generation for
combinational logic has been discussed and an example
of the test generation system for ILLIAC IV PE control
logic has been presented.

Test generation by means of graph representation
of the Boolean functions of combinational logic net-
works has several advantages over other methods.
First, distinguishable faults are explicitly expressed as
nodes in the graph. A test which is derived from one
path in the graph can detect stuck-type failures, if no
sneak paths exist. The nodes in the graph correspond
to the failure locations and failure types (s-a-0 or
s-a-1) in the combinational logic network.

Second, a complete set of tests for fault location can
easily be generated from the graph by the PGM pro-
gram. If no conflicts or sneak paths exist in the set of
paths generated by the PGM, the corresponding set of
tests is sufficient for locating failures in the combina-
tional logic network.

78 Fall Joint Computer Conference, 1970

This method is a powerful tool for testing tree strue-
ture logic networks. If the structure of a logic network
is not of the tree type, the conflicts may occur.

A method of checking for conflicts and sneak paths
has also been presented. This is used to determine the
validity of the tests for the combinational logic network.
Conflicts can easily be reduced by replacing tests or
rearranging of the PGM inputs after inspection of the
generated tests. It is noted that these conflicts are not a
result of our approach, but rather a property of the
network itself. .

Generally, conflicts will be few in control logic net-
works because their structure is close to a pure tree
structure, and no sneak paths exist if there is no re-
dundancy in a logical network.

ACKNOWLEDGMENT

The authors would like to thank Mr. L. Abel for his
enthusiastic discussion and our advisor, Professor D. L.
Slotnick. :

This work was supported by the Advanced Research
Projects Agency as administered by the Rome Air
Development Center, under Contract No. US AF
30(602)4144.

REFERENCES

1 A B CARROLL M KATO Y KOGA
K NAEMURA
A method of diagnostic test generation
Proceedings of Spring Joint Computer Conference pp
221-228 1969

2 D B ARMSTRONG
On finding a nearly minimal set of fault detection tests for
combinational logic nets
IEEE Trans on Computers, Vol EC-15 No 1 pp 66-73
February 1966

3J P ROTH W G BOURICIUS P R SCHNEIDER
Programmed algorithms to compute tests to detect and distin-
guish between failures in logic circuits
IEEE Trans on Computers Vol EC-16 No 5 pp 567-580
October 1967

4 H Y CHANG
An algorithm for selecting an optimum set of diagnostic tests
IEEE Trans on Computers Vol EC-14 No 5 pp 706-711
October 1965

5 C V RAMAMOORTHY
A structural theory of machine diagnosis
- Proceedings of Spring -Joint Computer Conference pp
743-756 1967

6 W H KAUTZ
Fault testing and diagnosis in combinational digital circuiis
IEEE Trans on Computers Vol EC-17 pp 352-366 April
1968

7 D R SHERTZ
On the representation of digital faults
University of Illinois Coordinated Science Laboratory
Report R-418 May 1969

The application of parity checks to an arithmetic control

by C. P. DISPARTE

Xerox Data Systems
El Segundo, California

INTRODUCTION

As circuit costs go down and system complexity goes
up, the inclusion of more built-in error detection cir-
cuitry becomes attractive. Most of today’s equipment

uses parity bits for detection of data transfer errors.

between units and within units. Error detection for
arithmetic data with product or residue type encoding
has been used to a limited extent. However, a particu-
larly difficult area for error detection has been control
logic. When an error occurs in the control, the machine
is likely to assume a state where data is meaningless
and/or recovery is impossible. Some presently known
methods of checking control logic are summarized below.

Methods of checking control logict

Sequential logic latch checking

A parity latch is added to a group of control latches
to insure proper parity. The state logic must be designed
such that there is no common hardware controlling the
change of different latches.

Checking with a simple sequential circuit

A small auxiliary control is designed which serves as a
comparison model for the larger control being checked.

Using a special pattern detecting circuit

An auxiliary sequential machine is designed which
repeats a portion of the larger sequential machine’s
states in parallel. This gives a check during part of the
cycle of the larger machine.

Checking with an end code check

.
A check on the control outputs is accumulated and
sampled at an end point.

79

Inactivity alarm

Checks the loss of timing or control signals.

Method of checking an arithmetic control

The application of parity checks for error detection
in an arithmetic control appears to have been first sug-
gested in 1962 by D. J. Wheeler.? He suggested the
application of a ‘“‘parity check for the words of the store”
as an advantage of the fixed store control where parity
checks would be applied to each microinstruction word.
In a conventional type control, the method of applying
parity checks is similar provided that the parity bits are
introduced at the flow chart stage of the design. The
present method is applied to an Illiac IT type arithmetic
control which is a conventional control rather than a
read only store control. The method gives single error
detection of the arithmetic control where errors are de-
fined as stuck in “1”” or “0”.

THE ILLIAC 1I

The Illiac IT which was built at the University of Il-
linois is composed of four major subsystems as shown in
Figure 1. The Executive Subsystem includes Advanced
Control, the Address Arithmetic Unit and a register
memory. The Arithmetic Subsystem contains Delayed
Control, the Link Mechanisms and the Arithmetic Unit.
The Core Memory Subsystem is the main storage. The
Interplay Subsystém econtains auxiliary storage, 1/0
devices and the associated control logic.

The Illiac 11 arithmetic subsystem

The arithmetic Subsystem of the Ilhac II shown in
Figure 2 performs base 4 floating point arithmetic. The
input and output channels carry 52 bits in parallel.

80 Fall Joint Computer Conference, 1970

Executive Core
Subsystem Memory
bl e »
Tl
' S~
] Ssel
1 Sl
] S~
9 Ny
Arithmetic Interpl
Subsystem erriay
CONTROL PATH==-=--—
DATA PATH

Figure 1—ILLIAC II organization

The first 45 bits of the operand are interpreted as a frac-
tion in the range —1<f<1. The last 7 bits are inter-
preted as an integer base 4 exponent in the range:
—64 <X <64. Both the fraction and the exponent have
a complement representation. The other input data
channel carries a six bit Delayed Control order which
specifies the operation performed by the Arithmetic
Subsystem.

The Arithmetic Subsystem is composed of three
principal units. The Arithmetic Unit (AU) contains the
computational logic and is divided into two major sub-
units as indicated. The Main Arithmetic Unit (M AU)
and the Exponent Arithmetic Unit (EAU) handle the
fractional and exponential calculations respectively.
The second principal unit of the subsystem contains the
Link Mechanism (LM) logic. This logic transmits com-
mands from Delayed Control to the Arithmetic Unit
(AU). It may further be divided into gate and selector
mechanisms and status memory elements. Delayed
Control is the third prineipal unit of the Arithmetic
Subsystem. Delayed Control logic governs the data flow
in the AU via the LM.

The order being executed by the AU is held in the
Delayed Control register (DCR). A new order cannot be
transferred to DCR until the order presently held has
been decoded and initiated by Delayed Control. If the
order requires an initial operand, Advanced Control
(AC) determines whether Delayed Control has used the
operand presently held in F1(IN). If so, AC places the
new operand in IN; otherwise, it must wait. If the order
requires a terminal operand (i.e., a store order) AC
checks the contents of the OUT register before the store
order is completed.

SPINDAC, a small delayed control

Delayed Control is constructed with a kind of logic
known as “speed-independent”. The theory of speed
independence holds that a speed independent logic ar-
ray retains the same sequential properties regardless of
the relative operating speeds of its individual circuits.?
The theory permits parallel operations while at the same
time precluding the occurrence of critical races.

A smaller version of Delayed Control called
SPINDAC (SPeed INDependent Arithmetic Control)
has been used as a model for the present study.
SPINDAC was designed by Swartwout* to control a
subset of the Illiac II floating point arithmetic instruc-
tions. The relatively simple arithmetic unit which
SPINDAC controls performs thirteen arithmetic in-
structions including addition, multiplication, exponent
arithmetic, and four types of store orders. For the pur-
poses of this study, SPINDAC has been divided into
eight subcontrols as shown in Figure 3. Each of the sub-
controls has one or more states. The Add subeontrol,
for instance has five states Al through A5. In general,
there is one flip-flop in SPINDAC for each state. The
entire SPINDAC has 29 states.

The MAU, EAU, and LM

The essence of this description is due to Penhollow.?
The Arithmetic Unit (AU) consists of the Main Arith-
metic Unit (MAU) and the Exponent Arithmetic Unit
(EAU). These two units operate concurrently, but are
physically and logically distinct. Both receive their
operands from the 52 bit IN register. The first 45
bits of this are interpreted as a fraction, —1<f<1, and
is the MAU operand. The last 7 bits are interpreted as

From 52Rits
F1IN)
From
Centrol
Delayed Link

achem ., . control k----+ Mechanisms

Control T T
Lo o L1 e e
[

MAU EAU

52 bits

From -
FO(OUT)

Figure 2—The arithmetic subsystem of the ILLIAC II

Application of Parity Checks 81

an exponent, —64<X <64, and is the EAU operand.
The complete floating point operand contained by IN
may be expressed as p=f-4*. Floating point results
placed in OUT have the same form. Both f and x are
in complement representation.

The block diagram of the Illiac II M AU is shown in
Figure 4. Registers A, M, Q and R each have 46 bits,
while S has 48 bits. Since the two adders yield sums in
base 4 stored carry representation, A and S also contain
23 and 24 stored carry bits respectively.

The MAU

During the decode step of every Delayed Control
order, the gate F1gMEM transfers the first 45 bits of
IN to M even though the order does not use an initial
operand. The results of the previous operation are gen-
erally held in A and Q which represent the primary rank
of the double length accumulator. The S and R registers
form the secondary rank of the double length accumula-
tor which usually holds an intermediate result at the end
of an operation. During the store step of every store
order, the RESgRO gate transfers a modified copy of
R to the OUT register.

The two adders shown in Figure 4 are composed of
base 4 adder modules. The A adder has the contents of
the A register as one input and the output of the MsA
selector as the other. In either case, the selector output
in two’s complement representation is added to the
stored carry representation held in A or S. A subtraction
is accomplished by causing M to appear at the selector
output and then adding an extra bit in the 44th posi-
tion.

The selector mechanisms have memory. Once a par-
ticular selector setting has been chosen by Delayed Con-

1 1 1 1

e ADD Cl Add li

) i ear rmal
Arithmetic | lsuac Subcorttrol Jlgrmalize
E1-E2) ALAS B1-82] N1-N3

tor Itipl
Su%cor%rol Sul gr’rt}’-ol
S$1-56 M1-M.

Correct Overflow
Detect Zero
Subcontrol

K1-K2|
J
1
Decode
Subcontrol
I D1

Figure 3—SPINDAC (SPeed INDependent Arithmetic Control)

To FOQUT)
via RESgFO

MS] [s —1 [

2Mss [¢‘— gs

R]
MsS

gR—-—(b
OMsS SSR

Mss 1 S-Adder| |14aassr; QassR; 4a0sSR
OASSR; OsSR

toSorR
From
FHINY

toRor S
M
F1gMEM MsA oA toQ

2MsA

MsA]
oMsA A-Adder | FRiasmezc; SRSAG; 4SRsAQ
s AQ

qS'QA go-.q)
A | [_a

[GESSS?OR 1 L

Figure 4—The ILLIAC II main arithmetic unit

trol it remains in effect until a new setting is made.
The settings shown in Figure 4 are easily interpreted,
provided the outputs of the A and S adders are used in
place of the register outputs.

The gate mechanisms do not have memory, so they
must be activated each time the contents of the as-
sociated registers are changed. If the gate is not acti-
vated, the register simply retains its old contents re-
gardless of the bit configuration appearing at its inputs.

The EAU

The block diagram of the Illiac II EAU is shown in
Figure 5. The EA, ES, EM and E registers each contain
8 bits. The EAU does arithmetic modulo 256. An 8 bit
adder (D-adder) with an optional carry into the Oth
position provides the capability of doing exponent arith-
metic and counting. It accepts the outputs of the EA
register and the sD selector as inputs, and yields a sum,
D, which can be placed in ES via gES or in E via DgE.
The selector sEA controls the input to EA via gEA.
The gate mechanism EMgE controls the input to E.
During the decode step the contents of F1 are trans-
mitted to EM via F1gMEM. At the end of an opera-
tion the exponent of the result is left in E.

The EAU decoder is a large block of logic whose in-
puts are the outputs of the D-adder. Its purpose is to
detect specific values and ranges of the adder output.
Knowledge of these values is used in the execution of the
floating add instruction. Detection of whether the out-
put is inside or outside the range —64<x<64 is also
accomplished at this point. Since knowledge of the pre-
vious range or value of d must be remembered during
the time the inputs to the adder are changed, gES or
DgE will gate the outputs of the EAU decoder into a

F1(IN)

82 Fall Joint Computer Conference, 1970

to FO(OUT)
— via ?ESgFO
e] E_]
to Delayed Control |
I gEs—(]) -64FS O=oge cb‘{MgE
EXPONENT DECODER
WITH_MEMORY
(EDM)
ESGEM '
N D SEA

EMSD | oJD-Adder| [ESSEA, ESEA|

E‘gsg (EAD) OsE A; 21sEA|
EM 250

25D i
from , ~22sD corl)s—gE A
o [CEA_]

Figure 5—The ILLIAC II exponent arithmetic unit

register called ED. The memory elements of this register
are named according to the range of d they represent.

The Link Mechanisms (LM) include gates, selector
mechanisms, and control status memory elements. De-
layed control directs the data flow and processing in the
Arithmetic Unit (AU) via the LM. Delayed Control
requests may determine the state of the LM directly or
indirectly through the outputs of decoders. The inputs
to these decoders may be the outputs of registers, adders,
or status memory elements. Selector mechanism and
status memory elements remember their present state.
The outputs of certain status memory elements in-
fluence the branching of Delayed Control. The setting
of one or more of these elements during the present
control step partially determines the sequence of future
control steps.

g (cries>2)vies=N)vies<-1) RS yxey)

EMSOV(ESSEA

Figure 6—SPINDAC add sequence partial low chart

SPINDAC flow chart

A partial flow chart for the SPINDAC Add sequence
is shown in Figure 6. The actions in two of the five states
A3 and A4 are indicated. Inside each of the boxes are
the control outputs in the form of gating and selector
outputs. On the lines leading to each box are the condi-
tional inputs in the form of decoder, status element and
selector outputs. They determine which of the control
outputs is to be energized. The signals in the boxes on
the center line preceded by ALL are always energized
when in that state.

The action effected by states A3 and A4 is the align-
ment of operands for floating point addition and sub-
traction. Rather than attempting to explain each of the
symbols in the flow chart, only the simple case for equal
exponents (i.e., no alignment required) will be explained.

The Equal Exponent Case

In Figure 7 the contents of A and Q are first right
shifted (4 AQsSR) then left shifted (4SRsAQ) so that
AQ remains with its original unshifted contents. The
exponent is gated into ES at A3 by gES in the ALL box.
The selector (with memory) EMsD was initially set in
state Al (not shown) which sensitizes this path. In
state A4, the exponent is passed back to EA via gEA
and ESSEA. EMgE gates the addend (subtrahend)
exponent to E. OMsS in A3 effects only a transfer.
KMsA is always the final step before leaving the A3—
A4 loop. This is to assimilate carries which have been
in base 4 stored carry representation until the final pass
through the loop. XA controls the exit from the loop
(exit if XA =1). The least significant carry into the
adder is cleared by C. All of these control signals are de-
pendent on the various outputs of the exponent de-
coders such as d>0, es=2 ete. The actions 2sD and

(EMSDME SSEA) 1}

Figure 7—Partial add sequence for equal exponents

Application of Parity Checks 83

Q (setting status element Q) are meaningless for the case
of equal exponents.

Speed-independent hardware

The logic design procedure used for Delayed Control
(and SPINDAC) employs Basic Logic Diagrams
(BLD’s) developed by Swartwout and others at the
University of Illinois.% 7 A digest of this work as well as
the design for a new error checking BLD is in the Ap-
pendix.

In the logic design procedure, each state of the flow
‘chart such as A3 or A5 is associated with a contrel point
(CP). The CP in turn has some associated logic and a
flip-flop. Using this terminology, it can be said that the
Add sequence has five control points (five states) and
the entire SPINDAC control has 29 CP’s. Using this
design procedure, the entire SPINDAC control ean be
mechanized with 27 flip-flops and 346 gates.

THE APPLICATION OF PARITY CHECKS

A general arithmetic control model is shown in Figure
8. Here a bit pattern at the output of the control repre-
sents a pattern of the gating and selector signals trans-
mitted to the arithmetic unit. The pattern will be a func-
tion of: (1) the instruction presently being executed,
(2) the conditional inputs and (3) the current step of the
control. The control must be protected against two types
of errors: first, an erroneous bit pattern at the outputs,
and second, an incorrect sequence of the internal states
of the control. In a “speed-independent” control, the
internal states of the control change one memory ele-
ment at a time. In most practical designs, this means
that the internal states of the control must be encoded
with a high degree of redundancy. One systematic way
of achieving a speed independent control, for instance,

Conditional
. Inputs
Encoded "] 7 > :
Instruction] "] — Gg}:gg,
Being - | (Selector
Executed [.| Signais

Figure 8—An arithmetic control model

es=1v(es=2) EMsD CRgP3
s0) 2sD,ByCR,gP2}
(e5>2) 2sD,ByCR.gP1 |0
ALL gAgQ,gEA ESSEA gPo—{A
(done) A s
done) XA

Aves0) o reEmO
n(es>0) “ESgEM

Figure 9—Application of parity checks to simplified control
point A4

shifts the single active control point down a shift
register. If any two bits (control points) are true at the
same time, the control is known to be in an incorrect
state. A method is suggested here of applying one or
more parity check symbols to the outputs of the speed-
independent control so that an erroneous output bit
pattern may be easily detected. If the control action
with faulty outputs can be detected before the effect
has been propagated, a replacement control may be
switched in or maintenance may be initiated.

Method

The method of applying single error detection parity
checks is explained with reference to simplified
SPINDAC control point A4 in Figure 9. In the flow
chart, some boxes are entered conditionally. These
conditional boxes are the ones which have gating or
selector outputs which are energized only if the appro-
priate conditions are true. The signals gP0, gP1, gP2,
and gP3 are gating parity checks which have been chosen
according to the following three rules:

1. If a conditional box has an even number of gat-
ing and/or selector signals, add an odd parity
checkmg gate to each box (gPl, gP2 and gP3
in the example).

2. If a conditional box has an odd number of gating
and/or selector signals, no parity checkmg gates
are added.

84 Fall Joint Computer Conference, 1970

RATIO OF
CHECKING HARDWARE
TO CONTROL HARDWARE

Overtiow & Detect Zero Sequence

CONTROL SIZE
IN NUMBER OF
30 CONTROL PONTS

5 0 15 20 25

Figure 10—Checking hardware vs. control size

3. Encode the entire ensemble of selector and gat-
ing signals for the control point with an even
parity gate assuming that only one each of mutu-
ally exclusive conditional signals is on. This even
parity gate, if required is placed in the ALL box.
(gP0 in the example).

The control point as finally encoded has an overall
even parity. If a single gating, selector or conditional
signal fails, an odd parity results so that detection may
be very simply accomplished.

If this procedure is applied to the add sequence, eight
parity gates must be added. The boxes to which parity
gates must be added in the partial add sequence flow
chart are indicated by heavy underseoring in Figure 6.
If the procedure is applied to each of the 29 control
points in the complete SPINDAC flow chart, 28 parity
checking gates are required to be added to its 81 gating
and selector outputs.

Hardware cost

While the hardware cost for the checker shown in the
Appendix is quite modest, the parity check hardware
requirement is significant. In particular, if there are
only a few control points in the control with a fairly
large number of gate and selector signals, the logic re-
quired to check the control may be more than is re-
quired for the control itself. The add sequence is a case
in point. If we use the conversion factor one flip-flop = 6
gates, the mechanization of the add sequence requires 99
equivalent gates while the number of equivalent gates
required for the checker (including the parity checker)
is 235. This gives a ratio of the checking hardware to the

control hardware of 2.37. This is worse than can be
achieved by triplication! If each of the eight SPINDAC
main sequences is considered to be a separate control,
the lowest ratio of checking hardware to control hard-
ware that can be obtained is 1.27 for the multiply se-
quence.

If the entire SPINDAC control is checked, the lowest
ratio of all is obtained, 1.15. Here a check on 81 gating
and selector requests must be made along with 28 parity
gate outputs. The majority of the 477 equivalent gates
required by the complete SPINDAC checker are used
in the parity check decoder. This decoder requires 337
of the total 477. The control itself requires an equivalent
of 412 gates giving the ratio of checking to control hard-
ware of 477/412=1.15.

Cost vs. control size

By considering each of the eight principal sequences
of the SPINDAC as separate controls, as shown in Fig-
ure 3, a plot of their respective ratios versus the number
of control points for each sequence can be obtained. This
plot is shown in Figure 10. In addition to the eight sep-
arate sequences, the plot for the entire SPINDAC con-
trol is given. If the entire Illiac II Delayed Control
were to be plotted, it is supposed that its ratio would lie
somewhat below the 1.15 for SPINDAC. This supposi-
tion stems from the fact that SPINDAC was designed
to include the use of almost all of the gating and selector
signals of Delayed Control so that their number would
not appreciably increase for the larger control. Another
observation which seems to indicate a decreasing ratio
for larger controls is that the number of parity gates re-
quired appears to increase at approximately one parity
gate per control point added.

Time penalty

The time penalty associated with the checker is also
a significant consideration. The parity checkers con-
sidered above were tree-like structures used to obtain a
minimum hardware count. For instance in the complete
SPINDAC checker which required 477 equivalent gates,
eight logic levels were required to complete the parity
check. If the check of the control is to be made in an
“on-line” mode, this delay could be intolerable. For
example, if the micro-operation being checked required
only three logic levels for its control, an additional five
levels would have to be waited before proceeding. This
could slow execution more than a factor of two.

A compromise approach is to permit the gating and
selector signals to be passed on to the arithmetic unit
and to complete their parity check in parallel with actual

Application of Parity Checks 85

execution. For the final step in the sequence, execution
could be held up so that erroneous results from a faulty
control would not be propagated outside the unit. With
this approach, arithmetic execution for the checked unit
can be made close to the execution rate of the unchecked
unit.

SUMMARY

For the rather small model of SPINDAC which was
considered, the amount of hardware required for an
arithmetic control with built-in single error detection is
2.15 times the size of an unchecked control. Indications
are that the ratio would be lower for a larger control.
Though the control can be designed to inhibit propaga-
tion of control signals until they have been checked, a
better design appears to be one where each sequence is
allowed to proceed in parallel with the checking of con-
trol signals. Release of arithmetic results is held up
until the control outputs for the final step of sequence
have been checked.

Though the cost in gates for this method appears to
be quite high, it offers the advantages of ease of design
and protection against conditional input failure. Since
the input gating logic to the flip-flops is separately de-
signed, a sequential error will often manifest itself by a
control “hang up.” The degree of error localization is
also enhanced by the control point organization. When
an error is detected, it will most likely be in the condi-
tional inputs or outputs associated with that control
point.

ACKNOWLEDGMENT

The author wishes to acknowledge the contribution of
Dr. Algirdas Avizienis who suggested the use of a speed-
independent control as a model.

REFERENCES

1 F F SELLERS M HSIAO L W BEARNSON
Error detecting logic for digital computers
McGraw-Hill New York 1968 Chapter 13
2 D J WHEELER
Read-only stores for the control of computers
Proceedings of the Second International Conference on
Information Processing Munich August-September 1962
3 D E MULLER W S BARTKY
A theory of asynchronous ctrcuits
Proceedings of an International Symposium on the Theory
of Switching Harvard University April 1957 Annals No
29 of the Computation Laboratory of Harvard University
Cambridge Massachusetts Harvard University Press 1959

4 R E SWARTWOUT
Further studies in speed-independent logic for a control
University of Illinois Graduate College Digital Computer
Laboratory Report No 130 Urbana Illinois December 13
1962

5 J O PENHOLLOW
The arithmetic subsystem of the new Illinois -computer
University of Illinois Graduate College Digital Computer
Laboratory Report No 160 Urbana, Illinois January 24 1964

6 D B GILLIES
A flow chart notation for the description of a speed-independent
control
Proceedings of the Second Annual Symposium on Switch-
ing Circuit Theory and Logical Design Detroit Michigan
October 1961 AIEE Publication S134

7 R E SWARTWOUT
One method for designing speed-independent logic for a control
Proceeding of the Second Annual Symposium on Switching
Circuit Theory and Logical Design Detroit Michigan
October 1961 ATEE Publication 5134

APPENDIX
The BLD logic design method

The logic design procedure used for the Illiac II
arithmetic control employs Basic Logic Diagrams
(BLD’s) developed by Swartwout and others at the
University of Illinois. Some of these BLD’s as well as a
new one for control logic checking are described below.

It will be noted by examination of Figures 2 through 4-
that several standard and nonstandard symbols are:
used. The symbol A is used for an AND circuit and O
for an OR circuit. The memory element used in control
is designated as a vertical rectangle with a “1”” indicat-
ing the true side and a ‘“0” indicating the false side. It
is said to be in the “1” state when the “1” output is a
“1”. These memory elements are Eccles-Jordan de-
vices; however, they are different in that they react to
an input zero rather than a one. Logically the element
has two NAND elements cross coupled. This same ele-
ment can be built with a reply signal as shown in Figure
4, Setting of Status Memory Elements.

The triangle enclosed in a circle and square is used to
designate the logical equivalent of the gate reply logic.
That is to say, when a gate is energized, the reply dupli-
cates the input signal after some time delay. There may
be many combinatorial circuits and amplifiers involved
in the gate logic; however, the total system is equivalent
to a delay.

A sequencing control

In order to assist in understanding the basic sequenc-
ing logie, an example is given in Figure 1. As shown in its
flow chart, this logic realizes the sequential energization

86 Fall Joint Computer Conference, 1970

Flow Chart

A A gAgAr B B gB gsrc C
1 00 1 0 1.1 1 0 1
1 0 O 0O 0 1 1 1
1 0 0 0O 1 1 1 1
1. 0 0 0 10 1 1
1 1. 0 0-1 0 1 1
0O 1 0 0 1 0 1 1
O 1 1 0 1 0 1 1
O 1 1.1 1 0 1 1
O 1 1 1 1 0 O 1 0 1
1 0O O 0 O 1
1 0 0 O 1 1

Figure 1—An example of a sequencing control

of gates. The table of states is given to show the
normal progression of a signal through such a